191. T. Cunis und B. Legat, „Sequential sum-of-squares programming for analysis of nonlinear systems“, San Diego, CA, Mai 2023. [Online]. Verfügbar unter:
http://arxiv.org/abs/2210.02142 190. F. Schimpf, J. Olucak, und W. Fichter, „Robust Landing Site Detection for Flight over Small Solar System Bodies“, San Diego, Jan. 2022. doi:
10.2514/6.2022-0955.
188. R. M. Bertolin, G. C. Barbosa, T. Cunis, I. Kolmanovsky, und C. E. S. Cesnik, „Gust Rejection of a Supersonic Aircraft During Final Approach“, San Diego, CA, 2022. doi:
10.2514/6.2022-2174.
187. A. Steinleitner, V. Frenzel, O. Pfeifle, J. Denzel, und W. Fichter, „Automatic Take-Off and Landing of Tailwheel Aircraft with Incremental Nonlinear Dynamic Inversion“, San Diego, Jan. 2022. doi:
10.2514/6.2022-1228.
185. B. Rothaupt, B. Grebing, und W. Fichter, „Model-Based Optimization of a Tethering Device for Ultralight Helicopters“, Fort Worth Convention Center, Fort Worth, Texas, USA, Mai 2022. doi:
10.4050/f-0078-2022-17514.
184. R. Schieni, M. Simsek, T. Cunis, O. Bilgen, und L. Burlion, „Control of Bistable Structures Using a Modified Hybrid Position Feedback Controller“, San Diego, CA, 2022. doi:
10.2514/6.2022-0922.
183. J. Olucak, F. Schimpf, F. Pinchetti, und W. Fichter, „Energy Aware Trajectory Generation for a Novel Cometary Lander Concept“, San Diego, Jan. 2022. doi:
10.2514/6.2022-0954.
182. M. Patel, A. Bandopadhyay, und A. Ahmad, „Collaborative Mapping of Archaeological Sites Using Multiple UAVs“, in
Intelligent Autonomous Systems 16, Cham, 2022, S. 54--70. doi:
https://doi.org/10.1007/978-3-030-95892-3_5.
181. E. Price, Y. T. Liu, M. J. Black, und A. Ahmad, „Simulation and Control of Deformable Autonomous Airships in Turbulent Wind“, in
Intelligent Autonomous Systems 16, Cham, 2022, S. 608--626. doi:
https://doi.org/10.1007/978-3-030-95892-3_46.
180. M. Schneider und W. Fichter, „Multi-Hypothesis Guidance With Interacting Multiple Model Filter“, San Diego, Jan. 2022. doi:
10.2514/6.2022-1846.
179. T. Cunis, I. Kolmanovsky, und C. E. S. Cesnik, „Control Co-Design Optimization: Integrating nonlinear controllability into a multidisciplinary design process“, San Diego, CA, 2022. doi:
10.2514/6.2022-2176.
178. O. Pfeifle und W. Fichter, „Time-Optimal Incremental Nonlinear Dynamic Inversion through Deadbeat Control“, San Diego, Jan. 2022. doi:
10.2514/6.2022-1596.
177. F. Hein, R. Wiedenroth, S. Notter, und W. Fichter, „Flight Mechanical Analysis and Nonlinear Controller Design for a 4-Line Kite“, San Diego, Jan. 2022. doi:
10.2514/6.2022-1229.
176. M. Welsch und W. Fichter, „Spline-based Path Tracking for VTOL Vehicles“, San Diego, Jan. 2022. doi:
10.2514/6.2022-1595.
174. N. Wettengl, S. Notter, und W. Fichter, „Enhancing Updraft Observability by Optimal Path Planning“, San Diego, Jan. 2022. doi:
10.2514/6.2022-2216.
173. F. Schimpf, S. Notter, P. Groß, und W. Fichter, „Multi-Agent Reinforcement Learning for Thermalling in Updrafts“, Jan. 2021. doi:
10.2514/6.2021-0864.
172. B. Lai, T. Cunis, und L. Burlion, „Nonlinear Trajectory Based Region of Attraction Estimation for Aircraft Dynamics Analysis“, Virtual, 2021. doi:
10.2514/6.2021-0253.
171. S. Notter, F. Schimpf, und W. Fichter, „Hierarchical Reinforcement Learning Approach Towards Autonomous Cross-Country Soaring“, Jan. 2021. doi:
10.2514/6.2021-2010.
170. O. Pfeifle und W. Fichter, „Energy Optimal Control Allocation for INDI Controlled Transition Aircraft“, 2021. doi:
10.2514/6.2021-1457.
169. M. R. Schlichting, S. Notter, und W. Fichter, „LSTM-Based Spatial Encoding: Explainable Path Planning for Time-Variant Multi-Agent Systems“, Virtual, Jan. 2021. doi:
10.2514/6.2021-1860.
168. E. Price, Y. T. Liu, M. J. Black, und A. Ahmad, „Simulation and Control of Deformable Autonomous Airships in Turbulent Wind“, Juni 2021.
167. O. Pfeifle
u. a., „Distributed Electric Propulsion for Yaw Control: Testbeds, Control Approach, and Flight Testing“, 2021. doi:
10.2514/6.2021-3192.
166. M. Welsch und W. Fichter, „Ground-Based Turn Coordination for VTOL Vehicles with Wind Compensation“, gehalten auf der AIAA Scitech 2021 Forum, Virtual, Jan. 2021. doi:
10.2514/6.2021-0255.
165. E. Bonetto, P. Goldschmid, M. J. Black, und A. Ahmad, „Active Visual SLAM with Independently Rotating Camera“, in
2021 European Conference on Mobile Robots (ECMR), 2021, S. 1–8. doi:
10.1109/ECMR50962.2021.9568791.
164. B. Rothaupt, S. Notter, und W. Fichter, „Autonomous Soaring Policy Initialization Through Value Iteration“, Virtual, Jan. 2021. doi:
10.2514/6.2021-2012.
163. T. Skibik, D. Liao-McPherson, T. Cunis, I. Kolmanovsky, und M. M. Nicotra, „Feasibility Governor for Linear Model Predictive Control“, in
Proceedings of the American Control Conference, New Orleans, LA, 2021, S. 2329--2335. doi:
10.23919/ACC50511.2021.9483054.
162. A. Vigneron, S. Delchambre, T. Ziegler, und W. Fichter, „A Transient-Suppressing Initialization for Low-Bandwidth Attitude Controllers“, Virtual, Jan. 2021. doi:
10.2514/6.2021-1563.
161. M. Welsch und W. Fichter, „Control of Large Multicopters with Rate-Limited Electric Motors“, gehalten auf der AIAA Scitech 2020 Forum, Orlando, FL, Jan. 2020. doi:
10.2514/6.2020-1832.
159. J. Stephan und W. Fichter, „Active Battery Charge Drift Stabilization for Redundant Multirotors“, Orlando, FL, Jan. 2020. doi:
10.2514/6.2020-1833.
158. S. Özkurt u. a., „From Helicopter Vibrations to Passenger Perceptions: A Closer Look on Standards“, Virtual, Okt. 2020.
157. M. Friedrich und W. Fichter, „Multibody model of a large multicopter with arbitrary propeller axes of rotation“, Orlando, FL, Jan. 2020. doi:
10.2514/6.2020-1505.
156. S. Özkurt u. a., „From Helicopter Vibrations to Passenger Perceptions: A Closer Look on Standards“, Virtual, Okt. 2020.
155. T. Cunis, D. Liao-McPherson, I. Kolmanovsky, und L. Burlion, „Model-Predictive Spiral and Spin Upset Recovery Control for the Generic Transport Model Simulation“, in
2020 IEEE Conference on Control Technology and Applications, Montréal, 2020, S. 1--7. doi:
10.1109/CCTA41146.2020.9206158.
154. J. Stephan, S. Notter, O. Pfeifle, F. Pinchetti, und W. Fichter, „Spline Trajectory Planning and Guidance for Fixed-Wing Drones“, Orlando, FL, 2020. doi:
10.2514/6.2020-0372.
153. R. Tallamraju, D. Salunkhe, S. Rajappa, A. Ahmad, K. Karlapalem, und S. V. Shah, „Motion Planning for Multi-Mobile-Manipulator Payload Transport Systems“, in
15th IEEE International Conference on Automation Science and Engineering, Aug. 2019, S. 1469--1474. doi:
10.1109/COASE.2019.8842840.
152. A. Ahmad u. a., „AirCap -- Aerial Outdoor Motion Capture“, Nov. 2019.
151. O. Pfeifle
u. a., „Precision performance measurements of fixed-wing aircraft with wing tip propellers“, Dallas, Texas, Juni 2019. doi:
10.2514/6.2019-3088.
150. S. Notter, M. Zürn, P. Groß, und W. Fichter, „Reinforced Learning to Cross-Country Soar in the Vertical Plane of Motion“, San Diego, California, Jan. 2019. doi:
10.2514/6.2019-1420.
149. R. Geshnizjani, A. Kornienko, T. Ziegler, J. Loehr, und W. Fichter, „Optimal Initial Gimbal Angles for Agile Slew Maneuvers with Control Moment Gyroscopes“, gehalten auf der AIAA Scitech 2019 Forum, San Diego, Jan. 2019. doi:
10.2514/6.2019-0936.
148. M. Karásek
u. a., „Accurate position control of a flapping-wing robot enabling free-flight flow visualisation in a wind tunnel“, in
International Journal of Micro Air Vehicles, 2019, Bd. 11. doi:
10.1177/1756829319833683.
147. T. Cunis, D. Liao-McPherson, J. P. Condomines, L. Burlion, und I. Kolmanovsky, „Economic Model-Predictive Control Strategies for Aircraft Deep-stall Recovery with Stability Guarantees“, in
Proceedings of the IEEE Conference on Decision and Control, Nice, 2019, S. 157--162. doi:
10.1109/CDC40024.2019.9030207.
146. P. Groß, S. Notter, und W. Fichter, „Estimating Total Energy Compensated Climb Rates from Position Trajectories“, Jan. 2019. doi:
10.2514/6.2019-0828.
145. S. Notter, P. Schrapel, P. Groß, und W. Fichter, „Estimation of Multiple Thermal Updrafts Using a Particle Filter Approach“, Kissimmee, Florida, Jan. 2018. doi:
10.2514/6.2018-1854.
144. M. Friedrich und W. Fichter, „Optimization of the mass ratio for a general multi-rotor aircraft“, Kissimmee, Florida, Jan. 2018. doi:
10.2514/6.2018-0531.
143. T. Cunis, T. Leth, L. C. Totu, und A. la Cour-Harbo, „Identification of Thrust, Lift, and Drag for Deep-stall Flight Data of a Fixed-wing Unmanned Aircraft“, in
2018 International Conference on Unmanned Aircraft Systems, Dallas, TX, 2018, S. 531--538. doi:
10.1109/ICUAS.2018.8453340.
142. R. Geshnizjani, B. Freudenau, und W. Fichter, „Scaled Verification Scenarios for Agile AOCS Testbeds“, gehalten auf der 67. Deutscher Luft- und Raumfahrtkongress, Friedrichshafen, Sep. 2018. doi:
10.25967/480181.
141. I. Geiss, S. Notter, A. Strohmayer, und W. Fichter, „Optimized Operation Strategies for Serial Hybrid-Electric Aircraft“, Atlanta, Georgia, Juni 2018. doi:
10.2514/6.2018-4230.
140. S. Notter, P. Schrapel, P. Groß, und W. Fichter, „Estimation of Multiple Thermal Updrafts Using a Particle Filter Approach“, Jan. 2018. doi:
10.2514/6.2018-1854.
139. C. A. Gerboni, S. Geluardi, W. Fichter, und H. H. Bülthoff, „Model-Following Control and Actuator Limits Analysis to Transform Helicopters into Personal Aerial Vehicles“, Phoenix, Arizona, Mai 2018.
138. T. Cunis und E. Baskaya, „Performance of Unmanned Aircrafts in the Event of Loss-of-control“, Melbourne, 2018.
137. U. Kazenmaier u. a., „Development of a civil light helicopter flight simulator for pilot training“, in Proceedings of the 44th European Rotorcraft Forum 2018 (ERF), 2018, S. 1197–1205.
136. J. Stephan und W. Fichter, „Gain-Scheduled Multivariable Flight Control under Uncertain Trim Conditions“, Kissimmee, Florida, Jan. 2018. doi:
10.2514/6.2018-1130.
135. T. Cunis, L. Burlion, und J.-P. Condomines, „Piece-wise identification and analysis of the aerodynamic coefficients, trim conditions, and safe sets of the generic transport model“, 2018. doi:
10.2514/6.2018-1114.
134. T. Cunis, J.-P. Condomines, und L. Burlion, „Full-envelope, six-degrees-of-freedom trim analysis of unmanned aerial systems based on piece-wise polynomial aerodynamic coefficients“, in
2017 Workshop on Research, Education and Development of Unmanned Aerial Systems, 2017, S. 108--113. doi:
10.1109/RED-UAS.2017.8101652.
133. C. A. Gerboni, S. Geluardi, J. Venrooij, A. Joos, W. Fichter, und H. H. Buelthoff, „Development of model-following control laws for helicopters to achieve personal aerial vehicle handling qualities“, Grapevine, Texas, Jan. 2017. doi:
10.2514/6.2017-1312.
132. A. Kornienko, P. Dhole, R. Geshnizjani, P. Jamparueang, und W. Fichter, „Determing Spacecraft Moment of Inertia using In-Orbit Data“, Salzburg, Austria, Mai 2017.
131. C. Gerboni, S. Geluardi, W. Fichter, und H. Bülthoff, „Investigation and Evaluation of Control Design Requirements for future Personal Aerial Vehicles“, Fort Worth, Texas, Mai 2017.
130. T. Cunis, L. Burlion, und J.-P. Condomines, „Non-linear Analysis and Control Proposal for In-flight Loss-of-control“, in Preprints of the 20th IFAC World Congress, Toulouse, 2017, S. 10681--10685.
129. A. Kornienko u. a., „Experimental Verification of Attitude Control System for Agile Spacecraft“, gehalten auf der 20th IFAC Symposion on Automatic Control in Aerospace, Sherbrooke, Canada, Aug. 2016.
128. L. Schmitt und W. Fichter, „Smooth Singularity Free Solution to the Three-Dimensional Bearings-Only Tracking Problem“, in
Proceedings of the 2016 AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, Jan. 2016, S. 1858. doi:
10.2514/6.2016-1858.
127. R. Geshnizjani, A. Kornienko, und W. Fichter, „Angular Momentum Based Steering Approach for Control Moment Gyroscopes“, Sherbrooke, Canada, Aug. 2016. doi:
10.1016/j.ifacol.2016.09.025.
126. M. Gros und W. Fichter, „G3-Continuous Trajectory Design For Fixed-Wing Aircraft Based On 6-DoF Kinematics“, San Diego, California, USA, Jan. 2016. doi:
10.2514/6.2016-1873.
125. S. Notter, A. Heckmann, A. Mcfadyen, und F. Gonzalez, „Modelling, Simulation and Flight Test of a Model Predictive Controlled Multirotor with Heavy Slung Load“, in
Proceedings of the 20th IFAC Symposium on Automatic Control in Aerospace 2016, Sherbrooke, Canada, 2016, Bd. 49, Nr. 17, S. 182–187. doi:
10.1016/j.ifacol.2016.09.032.
124. T. Rath, T. Richter, A. Steinwandel, und W. Fichter, „Emulation of Whirl Flutter on a Stable Helicopter Using Trailing Edge Flaps“, West Palm Beach, Florida, USA, Mai 2016.
123. T. Cunis, M. Karásek, und G. C. H. E. de Croon, „Precision Position Control of the DelFly II Flapping-wing Micro Air Vehicle in a Wind-tunnel“, Beijing, 2016.
122. C. A. Gerboni, A. Joos, F. M. Nieuwenhuizen, W. Fichter, und H. Buelthoff, „Control Augmentation Strategies for Helicopters used as Personal Aerial Vehicles“, San Diego, Jan. 2016. doi:
10.2514/6.2016-2137.
121. M. Zürn, K. Morton, A. Heckmann, A. McFadyen, S. Notter, und F. Gonzalez, „MPC controlled multirotor with suspended slung Load: System architecture and visual load detection“, in
2016 IEEE Aerospace Conference, 2016, S. 1–11. doi:
10.1109/AERO.2016.7500543.
120. J. Stephan und W. Fichter, „Fast Generation of Landing Paths for Fixed-Wing Aircraft with Thrust Failure“, San Diego, California, USA, Jan. 2016. doi:
10.2514/6.2016-1874.
119. F. King, A. Steinwandel, und W. Fichter, „Application Issues for In-Flight Tracking Control Using Trailing Edge Flaps“, West Palm Beach, Florida, USA, 2016.
118. D. Sanz, A. Ahmad, und P. Lima, „Onboard robust person detection and tracking for domestic service robots“, in
Robot 2015: Second Iberian Robotics Conference, Cham, Switzerland, 2015, S. 547–559. doi:
10.1007/978-3-319-27149-1_42.
117. M. Frangenberg, J. Stephan, und W. Fichter, „Fast Actuator Fault Detection and Reconfiguration for Multicopters“, Kissimmee, Florida, Jan. 2015.
116. M. Odelga, P. Stegagno, H. Bülthoff, und A. Ahmad, „A Setup for multi-UAV hardware-in-the-loop simulations“, 2015, S. 204–210. doi:
10.1109/RED-UAS.2015.7441008.
115. A. Steinwandel und W. Fichter, „Effects of 2/rev Trailing Edge Flap Input on Helicopter Vibrations for Concurrent Vibration and Noise Reduction“, Virginia Beach,Virginia, Mai 2015.
114. D. Bamber u. a., „Absolute Attitude Determination System for a Spherical Air Bearing Testbed“, gehalten auf der 66th International Astronautical Congress, Jerusalem, Okt. 2015.
113. J. Grzymisch, W. Fichter, W. D. Losa, und M. Casasco, „Bearings-Only Rendezvous with Enhanced Performance“, in Selected Papers of the Third CEAS Specialist Conference on Guidance, Navigation and Control, Toulouse, 2015, S. 571–590.
112. R. Kueke u. a., „Fly-by-Wire for CS23 Aircraft - Core Technology for General Aviation and RPAS“, London, Okt. 2015.
111. A. Ahmad und P. Lima, „Dataset Suite for Benchmarking Perception in Robotics“, 2015.
110. R. Ventura und A. Ahmad, „Towards Optimal Robot Navigation in Urban Homes“, in
RoboCup 2014: Robot World Cup XVIII, Cham, Switzerland, 2015, S. 318–331. doi:
10.1007/978-3-319-18615-3_26.
109. T. Richter, T. Rath, O. Oberinger, und W. Fichter, „Investigation of Whirl Flutter Stabilization using Active Trailing Edge Flaps“, Virginia Beach,Virginia, 2015.
108. F. A. King, A. Steinwandel, und W. Fichter, „Performance Characteristics of Symmetrized In-Flight Tracking Control“, Montreal, Quebec,Canad, Mai 2014.
107. T. Souanef und W. Fichter, „Adaptive Altitude Hold of a Small Fixed Wing UAV“, in Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace 2013, Würzburg, Germany, Sep. 2013, Bd. 19.
106. A. Troppan, E. Guerreiro, F. Celiberti, G. Santos, A. Ahmad, und P. Lima, „Unknown-color spherical object detection and tracking“, Apr. 2013, S. 1–4. doi:
10.1109/Robotica.2013.6623533.
105. A. Ahmad, G. Tipaldi, P. Lima, und W. Burgard, „Cooperative Robot Localization and Target Tracking based on Least Squares Minimization“, Mai 2013, S. 5696–5701. doi:
10.1109/ICRA.2013.6631396.
104. A. Ahmad, T. Nascimento, A. Conceicao, A. Moreira, und P. Lima, „Perception-driven multi-robot formation control“, Mai 2013, S. 1851–1856. doi:
10.1109/ICRA.2013.6630821.
103. A. Ahmad und P. Lima, „Multi-Robot Cooperative Object Tracking Based on Particle Filters“, in
Robotics and Autonomous Systems, Okt. 2013, Bd. 61, Nr. 10, S. 1084--1093. doi:
10.1016/j.robot.2012.12.008.
102. M. Trittler, T. Rothermel, und W. Fichter, „Visual Servoing Based Landing Approach Controller for Fixed-Wing MAVs“, in Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace 2013, Würzburg, Germany, Feb. 2013, Bd. 19, S. September.
101. F. Weimer, M. Frangenberg, und W. Fichter, „Pipelined Particle Filter with Non-Observability Measure for On-Board Navigation with MAVs“, Boston, Aug. 2013. doi:
10.2514/6.2013-5247.
100. M. Casasco
u. a., „Pointing Error Budgeting for High Pointing Accuracy Mission using the Pointing Error Engineering Tool“, Boston, Aug. 2013. doi:
10.2514/6.2013-5251.
99. M. Gros, A. Schoettl, und W. Fichter, „Spline and OBB-based Path-Planning for Small UAVs with the Finite Receding-Horizon Incremental-Sampling Tree Algorithm“, Boston, Aug. 2013. doi:
10.2514/6.2013-4788.
98. H. Vogel, W. Fichter, R. Choe, E. Xargay, und N. Hovakimyan, „Magnetic Momentum Control of a Satellite Augmented with an L1 Adaptive Controller“, Boston, Massachusetts, USA, Aug. 2013. doi:
10.2514/6.2013-5092.
97. J. Grzymisch, W. Fehse, W. Fichter, M. Casasco, und D. Losa, „On the Issues and Requirements of Bearings-Only Guidance and Navigation for In-Orbit Rendezvous“, in
Proceedings of the 64 International Astronautical Congress, Beijing, China, 2013, Bd. 64. doi:
10.1007/978-3-319-17518-8_33.
96. M. Trittler, W. Fichter, und A. Schöttl, „Return Strategies for Fixed-Wing MAVs after Loss of GPS“, Würzburg, Germany, Sep. 2013.
95. T. Souanef, F. Pinchetti, und W. Fichter, „L1 Adaptive Control for Systems with Matched Stochastic Disturbance“, in Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference on Guidance, Navigation & Control, Delft University of Technology, Delft, 2013, S. 297–313.
94. J. Grzymisch, W. Fichter, M. Casasco, und D. Losa, „A Spherical Coordinate Parameterization for an In-Orbit Bearings-Only Navigation Filter“, in Proceedings of the Advances in Aerospace Guidance, Navigation and Control Conference, 2013, S. 215–231.
93. A. Joos, P. Heritier, C. Huber, und W. Fichter, „Method for parallel FPGA implementation of nonlinear model predictive control“, Bangalore, India, Feb. 2012.
92. F. A. King, J.-B. Maurice, W. Fichter, O. Dieterich, und P. Konstanzer, „In-Flight Tracking Control for Helicopters using Active Trailing Edge Flaps“, Minneapolis, Minnesota, USA, 2012.
91. F. Weimer, T. Rothermel, und W. Fichter, „Adaptive actuator fault detection and identification for UAV applications“, Bangalore, India, Feb. 2012. doi:
10.3182/20120213-3-IN-4034.00015.
90. S. Weikert, A. Wiegand, W. Fichter, und R. Saage, „Coupled Mission and GNC Analysis for Space Robotic Missions”“, in International Astronautical Congress, Naples, Italy, Okt. 2012, Bd. 63.
89. M. Gros, W. Grimm, A. Schöttl, und W. Fichter, „Finite receding-horizon incremental-sampling tree with application to a fixed-wing UAV“, in Proceedings of the 1st IFAC Workshop on Embedded Guidance, Navigation and Control in Aerospace, Bangalore, India, Feb. 2012, Bd. 1, Nr. 1.
88. A. Joos, F. Weimer, und W. Fichter, „Path Planning with FPGAs for UAV Applications“, Carlsbad, Czech Republic, Juni 2011.
87. T. Ott, W. Fichter, S. Bennani, und S. Winkler, „Coherent Precision Pointing Control Design based on Hinf-Closed Loop Shaping“, Karlovy Vary, CZ, Juni 2011.
86. A. Joos, M. A. Müller, D. Baumgärtner, W. Fichter, und F. Allgöwer, „Nonlinear Predictive Control Based on Time-Domain Simulation for Automatic Landing“, in Proceedings of the AIAA Guidance, Navigation, and Control Conference 2011, Portland, Oregon, USA, Aug. 2011, Bd. 2.
85. S. Winkler, F. Cirillo, K. Ergenzinger, T. Ott, R. Wilhelm, und E. Zaunick, „High-Precision Attitude Determination and Control of the EUCLID Spacecraft: Challenges and Solutions“, Karlovy Vary, CZ, Juni 2011.
84. G. M., N. M., S. A., und W. Fichter, „Motion Planning for a Fixed-Wing MAV Incorporating Closed-Loop Dynamics Motion Primitives and Safety Maneuvers“, in
Selected Papers of the 1st CEAS Specialist Conference on Guidance, Navigation and Control, Berlin, 2011, S. 247–260. doi:
10.1007/978-3-642-19817-5_20.
83. A. Joos und W. Fichter, „Parallel Implementation of Constrained Nonlinear Model Predictive Controller for an FPGA-based Onboard Flight Computer“, 2011. doi:
10.1007/978-3-642-19817-5_22.
82. P. Lima, P. Santos, R. Oliveira, A. Ahmad, und J. Santos, „Cooperative Localization Based on Visually Shared Objects“, in
RoboCup 2010: Robot Soccer World Cup XIV, Berlin, Germany, 2011, S. 350–361. doi:
10.1007/978-3-642-20217-9_30.
81. T. Ott, A. Benoit, P. Van den Braembussche, und W. Fichter, „ESA Pointing Error Engineering Handbook“, Karlovy Vary, CZ, Juni 2011.
80. M. Trittler, H. Su, W. Fichter, und A. Schoettl, „Intelligent Camera as Subsystem for Vision-Aided On-Board Navigation of MAVs“, Juni 2011.
79. T. Kopfstedt, M.-O. Restle, und W. Grimm, „Terrain Optimized Nonholonomic Following of Vehicle Tracks“, Lecce, Italy, Sep. 2010.
78. M. Dìaz-Aguillò u. a., „Modeling LISA Pathfinder for Data Analysis“, Stanford University, CA, USA, Juni 2010.
77. R. Saage, R. Ross, A. Schleicher, und W. Fichter, „Controller Design Method for Drag-Free Systems with Micro-Propulsion Constraints“, Aug. 2010. doi:
10.2514/6.2010-8200.
76. R. Saage, A. Schleicher, und W. Fichter, „Method for LFT Calculation with High Order Parametric Systems“, Toronto, Canada, Aug. 2010. doi:
10.2514/6.2010-8200.
75. M. Fach, K. H. Well, U. Salomon, und F. Weimer, „Camera-Aided Navigation Sensor for Unmanned Blimp with low Trajectory Dynamics“, Toronto, Ontario Canada, Aug. 2010.
74. A. Joos, A. Häfner, F. Weimer, und W. Fichter, „Quadrocopter Ground Effect Compensation with Sliding Mode Control“, Toronto, Canada, Aug. 2010.
73. A. Joos und W. Fichter, „Yaw Guidance for Airships under low Airspeed Conditions“, Toronto, Canada, Aug. 2010.
72. A. Grynagier, S. Vitale, und W. Fichter, „The Data Analysis for the LISA Pathfinder Drift Mode“, Stanford University, CA, USA, Juni 2010.
71. C. Böhm, M. Merk, W. Fichter, und F. Allgöwer, „Spacecraft Rate Damping with Predictive Control using Magnetic Actuators Only“, in Nonlinear Model Predictive Control - Towards New Challenging Applications, Lecture Notes in Control and Information Sciences, 2009, S. 511–520.
70. F. Saupe, J.-B. Maurice, F. King, und W. Fichter, „Robustness Analysis of Linear Time Periodic Systems using Harmonic Transfer Function“, Chicago, USA, Aug. 2009.
69. A. Ahmad, A. Del Bue, und P. Lima, „Background Subtraction Based on Rank Constraint for Point Trajectories“, Okt. 2009, S. 1–3.
68. J.-B. Maurice, F. King, W. Fichter, O. Dieterich, und P. Konstanzer, „Floquet Convergence Analysis for Periodic Active Rotor Systems Equipped with Trailing Edge Flaps“, Hamburg, Germany, Sep. 2009.
67. A. Schleicher, R. Saage, M. Hirth, N. Brandt, und W. Fichter, „Drag-Free Control Design for Misaligned Cubic Test Masses“, Ireland, Juni 2008.
66. N. Brandt und W. Fichter, „Results and Consequences for the LISA Pathfinder Inertial Sensor FEM Analysis“, Barcelona, Spain, Juni 2008.
65. T. Ziegler, W. Fichter, M. Schulte, und S. Vitale, „Principles, Operations, and Expected Performance of the LISA Pathfinder Charge Management System“, Barcelona, Spain, Juni 2008.
64. M. Trittler, W. Fichter, R. Voit-Nitschmann, R. Schmoldt, und K. Kittmann, „Preliminary System Identification of the Blended Wing Body Flight Demonstrator VELA2 from Flight Data“, Honolulu, USA, Aug. 2008.
63. M. Hirth, W. Fichter, N. Brandt, A. Schleicher, D. Gerardi, und G. Wanner, „Optical Metrology Alignment and Impact on the Measurement Performance of the LISA Technology Package“, Barcelona, Spain, Juni 2008.
62. A. Ahmad und N. Dhang, „Probabilistic Roadmap Method and Real Time Gait Changing Technique Implementation for Travel Time Optimization on a Designed Six-legged Robot“, Okt. 2008, S. 1–5.
61. F. Montemurro, W. Fichter, und M. Schlotterer, „Sliding Mode Technique Applied to Test Mass Suspension Control“, Toulouse, France, Juni 2007.
60. T. Ziegler und W. Fichter, „Test Mass Stiffness Estimation for the LISA Pathfinder Drag-Free System“, Hilton Head, South Carolina, USA, Aug. 2007.
59. T. Ziegler, M. Göbel, A. Schleicher, und W. Fichter, „Calibration of the Micro-Newton Propulsion System of the LISA Pathfinder Drag-Free Satellite“, in CEAS Conference, Berlin, Germany, Sep. 2007, Bd. 1.
58. W. Fichter, A. Schleicher, S. Bennani, und S. Wu, „Closed Loop Performance and Limitations of the LISA Pathfinder Drag-Free Control System“, Hilton Head, South Carolina, USA, Aug. 2007. doi:
10.2514/6.2007-6732.
57. K. H. Well, „Aircraft Control Laws for Envelope Protection“, Keystone, Colorado, Aug. 2006.
56. A. Mayanna, W. Grimm, und K. H. Well, „Adaptive Guidance for Terminal Area Energy Management (TAEM) of Reentry Vehicles“, Keystone, Colorado, Aug. 2006.
55. D. Y. Reber und W. Ayadi, „Decoupling of an H-Infinity Controller in Observer Form for Helicopter Vibration Reduction“, in International Basic Research Conference on Rotorcraft Technology, Nanjing, China, Nov. 2005, Bd. 2.
54. W. Ayadi und D. Y. Reber, „Helicopter Vibration Reduction Using Digitally Redesigned H-Infinity Controller in Observer Form“, in International Basic Research Conference on Rotorcraft Technology, Nanjing, China, Nov. 2005, Bd. 2.
53. S. Erb, „Optimization of a GTO-GEO Low Thrust Satellite Transfer under Industrial Considerations“, Stockholm, Sweden, 2005.
52. E. M. Wallner und K. H. Well, „Nonlinear Adaptive Flight Control for the X-38 Vehicle“, in Proceedings of the 18th International Symposium on Space Flight Dynamics (ESA SP-548), Munich, Germany, Okt. 2004, S. 353.
51. A. Kornienko und K. Well, „Estimation of Longitudinal Motion of a Remotely Controlled Airship“, Austin, Texas, USA, Aug. 2003.
50. E. M. Wallner und K. H. Well, „TETRA Technologien für zukünftige Raumtransportsysteme Anpassung der Lageregelung der X-38 an eine neue Version der Aerodynamik“, 2003.
49. W. Grimm u. a., „Unified Guidance and Control for Planetary Entry“, in International Symposium on Atmospheric Reentry Vehicles and Systems, Arcachon, France, März 2003, Bd. 3.
48. E. Wallner und Klaus. H. Well, „Direct Adaptive Control of Aerospace Vehicles Using CMAC Neural Networks“, Stuttgart, Germany, 2002.
47. M. Gräßlin, E. Wallner, J. Burkhardt, U. Schoettle, und K. H. Well, „Adaptive Guidance and Control Algorithms Applied to the X-38 Reentry Mission“, Housten, Texas, USA, 2002.
46. T. Mannchen, D. G. Bates, und I. Postlethwaite, „Worst-Case Uncertain Parameter Combinations for Flight Control Systems Analysis“, in Proceedings of the IFAC World Congress, Barcelona, Spain, Juli 2002, Bd. 15, Nr. 1210.
45. E. Wallner u. a., „Development of Guidance and Control Algorithms for the X-38 Return Vehicle“, Stuttgart, Germany, 2002.
44. E. Wallner und Klaus. H. Well, „Attitude Control of a Reentry Vehicle with Internal Dynamics“, Monterey, CA, USA, 2002.
43. T. Mannchen und Klaus. H. Well, „Influence of the Number of Rotor Blades on Helicopter Active Vibration Reduction Potential“, in Proceedings of the European Rotorcraft Forum, Bristol, UK, Sep. 2002, Bd. 28, Nr. 81.
42. T. Hablowetz, T. Mannchen, und Klaus. H. Well, „Advanced Helicopter Flight Simulation with Controller in the Loop“, in Proceedings of the European Rotorcraft Forum, Netherlands Congress Centre, Hague, Netherlands, Sep. 2001, Bd. 26, Nr. 25.
41. E. Wallner und Klaus. H. Well, „Nonlinear Flight Control Design for the X-38 Using CMAC Neural Networks“, Montreal, Canada, Aug. 2001.
40. P. Teufel und Klaus. H. Well, „Multidimensional Gust Simulation and Load Alleviation of a Flexible Aicraft“, Madrid, Spain, Juni 2001.
39. R. A. Schubert und K. H. Well, „Flight Mechanical Modelling of an ‚„Air Train“‘ using Methods and Formalisms of Multibody Systems“, in Lighter-Than-Air, Akron, Ohio, USA, 2001, Bd. 14.
38. T. Mannchen und Klaus. H. Well, „Helicopter Vibration Reduction using Periodic Robust Control“, in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Montreal, Quebec, Canada, Aug. 2001, Bd. AIAA-2001-4034.
37. P. F. Gath und K. H. Well, „Trajectory Optimization Using a Combination of Direct Multiple Shooting and Collocation“, in AIAA Guidance, Navigation, and Control Conference, 2001, Bd. AIAA-2001-4047.
36. D. Fischer, T. Zöbelein, und A. Roenneke, „Flugführung und Flugregelung des Deorbitmanövers von X-38/CRV“, 2001.
35. P. F. Gath, Klaus. H. Well, und K. Mehlem, „Automatic Initial Guess Generation for Ariane 5 Dual Payload Ascent Trajectory Optimization“, in AIAA Guidance, Navigation, and Control Conference, Denver, CO, USA, Aug. 2000, Bd. AIAA 2000-4589.
34. K. H. Well, G. Ortega, K. Mehlem, M. Steinkopf, J. Mulder, und A. J. J. van der Boom, „ESTEC Guidance, Navigation, and Control activities for the Crew Return Vehicle (CRV)“, Noordwijk, Netherlands, Okt. 2000.
33. T. Hablowetz, „Advanced Helicopter Flight and Aeroelastic Simulation based on General Purpose Multibody Code“, in AIAA Modeling and Simulation Technologies Conference, Denver, CO, USA, Aug. 2000, Bd. AIAA 2000-4299.
32. P. Teufel, M. Hanel, und K. H. Well, „Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input“, Ottawa Canada, Okt. 1999.
31. H. Klotz, M. Markus, W. Grimm, und S. E. Strandmoe, „Guidance and Control for Autonomous Reentry and Precision Landing of a small Capsule“, in ESA International Conference on Spacecraft Guidance, Navigation, and Control, Noordwijk, Netherlands, 1999, Bd. 4.
30. P. F. Gath und A. J. Calise, „Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs“, in AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, USA, Aug. 1999, Bd. AIAA-99-4308.
29. H. Klotz, J. Starke, B. Frapard, C. Champetier, W. Grimm, und S. E. Strandmoe, „Guidance, Navigation, and Control for Autonomous Reentry and Precision Landing of future small Capsules“, Arachon, France, 1999.
28. K. H. Well, „ARIANE V Ascent Trajectory Optimization with a First-Stage Splash-Down Constraint“, in IFAC Workshop, Juni 1998, Bd. 8.
27. G. Weirich und W. Grimm, „A Classical Approach Towards the Ascent Control of a Hypersonic Vehicle“, in Workshop des SFB 255: Optimalsteuerungsprobleme von Hyperschall-Flugsystemen, Tagungsband, University Greifswald, Germany, Okt. 1998, S. 51–62.
26. P. Teufel, M. Hanel, und K. H. Well, „Integrated Flight and Aeroelastic Control of a Flexible Transport Aircraft“, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 1998, Bd. AIAA-98-4297.
25. W. Grimm und Klaus. H. Well, „Intercept Maneuvers with Reduced Detection Probability“, UK, März 1997.
24. M. Paus und Klaus. H. Well, „Optimal Ascent Guidance for a Hypersonic Vehicle“, in AIAA Guidance, Navigation and Control Conference, San Diego, CA, USA, Juni 1996, Bd. AIAA 96-3901, S. 9.
23. A. Figgen, A. J. Roenneke, und Klaus. H. Well, „Investigations of Guidance and Control of a Semi-Ballistic Reentry Vehicle“, in Space Course, Universität Stuttgart, IFR, Stuttgart, Germany, 1995, Bd. 3, S. 209–229.
22. M. Paus, W. Grimm, und Klaus. H. Well, „Real-Time Optimization for the Guidance of Dynamic Systems“, in IFAC Workshop on Control Applications of Optimization, Haifa, Israel, Dez. 1995, Bd. 10.
21. B. G. Kämpf und Klaus. H. Well, „Attitude Control System for a Remotely-Controlled Airship“, in AIAA Lighter-Than-Air Systems Technology Conference, Clearwater, Fl, USA, Mai 1995, Bd. 11.
20. A. Roenneke, K. Schütz, und Klaus. H. Well, „Trajectory Optimization Using 6-DOF Vehicle Models“, in IFAC Workshop on Control Applications of Optimization, Haifa, Israel, 1995, Bd. 10.
19. A. J. Roenneke und K. H. Well, „Nonlinear Flight Control for a High-Lift Reentry Vehicle“, in AIAA Guidance, Navigation, and Control Conference, 1995, Bd. AIAA 95-3370-CP, S. 1798–1805.
18. C. Jänsch und W. K. H., „Optimal Multi-Criteria Aeroassisted Orbital Transfer Trajectories“, in IFACS Symposium on Automatic Control in Aerospace, Sep. 1994, Bd. 13.
17. W. Grimm, „Optimal Flight Paths with Constrained Dynamic Pressure“, in Optimal Control - Calculus of Variations, Optimal Control Theory, and Numerical Methods, Basel, Switzerland, 1993, Bd. 111.
16. W. Grimm, „On Ascent Guidance of a Hypersonic Vehicle“, in IFAC-Symposium on Automatic Control in Aerospace Control, Ottobrunn, Germany, Sep. 1993, Bd. 12.
15. W. Buhl, K. Ebert, H. Herbst, K. Schnepper, und Klaus. H. Well, „Branched Trajectory Optimization for a Two-Stage to Orbit Vehicle“, Seattle, USA, 1993.
14. M. Paus, „A General Approach to Optimal Real-Time Guidance of Dynamic Systems Based on Nonlinear Programming“, in AIAA Guidance, Navigation, and Control Conference, 1992, Nr. 92–4378.
13. E. M. Cliff, K. H. Well, und K. Schnepper, „Flight-Test Guidance for Airbreathing Hypersonic Vehicles“, Hilton Head, South Carolina, USA, Jan. 1992. doi:
10.2514/6.1992-4301.
12. A. J. Roenneke und Klaus. H. Well, „Reentry Control of a Low-Lift Maneuverable Spacecraft“, in AIAA Guidance, Navigation, and Control Conference, Hilton Head, South Carolina, USA, 1992, Bd. AIAA 92-4455-CP, S. 641–652.
11. W. Grimm, C. Jänsch, A. Markl, K. Schnepper, und K. H. Well, „Guidance of Aerospace Vehicles“, in Trajectory Optimization and Guidance of Aerospace Vehicles, Oberpfaffenhofen, Germany, 1991, Nr. DR 4.04 of the Carl-Cranz-Gesellschaft.
10. W. Grimm und K. H. Well, „Optimal Guidance Anticipating Missile Performance“, in AGARD-Symposium of the Guidance and Control Panel on Air Vehicle Mission Co, Amsterdam, Netherlands, Okt. 1991, Bd. 53.