Publikationen

Hier finden Sie alle Publikationen des iFR.

Publikationen

  1. (Zeitschriften-) Aufsätze

    1. 310. T. Cunis, I. Kolmanovsky, und C. E. S. Cesnik, „Integrating Nonlinear Controllability into a Multidisciplinary Design Process“, Journal of Guidance, Control, and Dynamics, Jan. 2023, doi: 10.2514/1.G007067.
    2. 309. S. Notter, F. Schimpf, G. Müller, und W. Fichter, „Hierarchical Reinforcement Learning Approach for Autonomous Cross-Country Soaring“, Journal of Guidance, Control, and Dynamics, Bd. 46, Nr. 1, Art. Nr. 1, Jan. 2023, doi: 10.2514/1.G006746.
    3. 308. J. Schneider, M. Frangenberg, S. Notter, W. Scholz, W. Fichter, und A. Strohmayer, „Integration of propelled yaw control on wing tips: a practical approach to the Icaré solar-powered glider“, CEAS Aeronautical Journal, Sep. 2022, doi: 10.1007/s13272-022-00603-4.
    4. 307. O. Pfeifle und W. Fichter, „Minimum Power Control Allocation for Incremental Control of Over-Actuated Transition Aircraft“, Journal of Guidance, Control, and Dynamics, Bd. 0, Nr. 0, Art. Nr. 0, 2022, doi: 10.2514/1.G006929.
    5. 306. E. Bonetto, P. Goldschmid, M. Pabst, M. J. Black, und A. Ahmad, „iRotate: Active visual SLAM for omnidirectional robots“, Robotics and Autonomous Systems, 2022, doi: 10.1016/j.robot.2022.104102.
    6. 305. T. Skibik, D. Liao-McPherson, T. Cunis, I. V. Kolmanovsky, und M. M. Nicotra, „A Feasibility Governor for Enlarging the Region of Attraction of Linear Model Predictive Controllers“, IEEE Transactions on Automatic Control, Bd. 67, Nr. 10, Art. Nr. 10, 2022, doi: 10.1109/TAC.2021.3123224.
    7. 304. N. Houba, S. Delchambre, T. Ziegler, G. Hechenblaikner, und W. Fichter, „LISA spacecraft maneuver design to estimate tilt-to-length noise during gravitational wave events“, Phys. Rev. D, Bd. 106, Nr. 2, Art. Nr. 2, Juli 2022, doi: 10.1103/PhysRevD.106.022004.
    8. 303. M. R. Schlichting, S. Notter, und W. Fichter, „Long Short-Term Memory for Spatial Encoding in Multi-Agent Path Planning“, Journal of Guidance, Control, and Dynamics, Bd. 45, Nr. 5, Art. Nr. 5, Mai 2022, doi: 10.2514/1.G006129.
    9. 302. R. Geshnizjani und W. Fichter, „Steering Law for Control Moment Gyroscopes with Online Torque Capacity Maximization“, Journal of Guidance, Control, and Dynamics, S. 1--17, Nov. 2022, doi: 10.2514/1.g005694.
    10. 301. N. Houba, S. Delchambre, T. Ziegler, und W. Fichter, „Optimal Estimation of Tilt-to-Length Noise for Spaceborne Gravitational-Wave Observatories“, Journal of Guidance, Control, and Dynamics, S. 1--15, Apr. 2022, doi: 10.2514/1.g006064.
    11. 300. N. Saini, E. Bonetto, E. Price, A. Ahmad, und M. J. Black, „AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation“, IEEE Robotics and Automation Letters, Bd. 7, Nr. 2, Art. Nr. 2, Apr. 2022, doi: 10.1109/LRA.2022.3145494.
    12. 299. T. Cunis und I. Kolmanovsky, „Viability, viscosity, and storage functions in model-predictive control with terminal constraints“, Automatica, Bd. 131, S. 109748, 2021, doi: 10.1016/j.automatica.2021.109748.
    13. 298. K. Holder u. a., „Digital Development Process for the Drive System of a Balanced Two-Wheel Scooter“, Vehicles, Bd. 3, Nr. 1, Art. Nr. 1, 2021, doi: 10.3390/vehicles3010003.
    14. 297. A. Vigneron, S. Delchambre, T. Ziegler, und W. Fichter, „Transient-Suppressing Initialization for Low-Bandwidth Attitude Controllers“, Journal of Guidance, Control, and Dynamics, Bd. 44, Nr. 11, Art. Nr. 11, Nov. 2021, doi: 10.2514/1.g005948.
    15. 296. D. P. Bergmann, J. Denzel, O. Pfeifle, S. Notter, W. Fichter, und A. Strohmayer, „In-Flight Lift and Drag Estimation of an Unmanned Propeller-Driven Aircraft“, Aerospace, Bd. 8, Nr. 2, Art. Nr. 2, 2021, doi: 10.3390/aerospace8020043.
    16. 295. O. Pfeifle und W. Fichter, „Cascaded Incremental Nonlinear Dynamic Inversion for Three-Dimensional Spline-Tracking with Wind Compensation“, Journal of Guidance, Control and Dynamics, Bd. 44, Nr. 8, Art. Nr. 8, Aug. 2021, doi: 10.2514/1.G005785.
    17. 294. O. Pfeifle, S. Notter, W. Fichter, D. P. Bergmann, J. Denzel, und A. Strohmayer, „Verifying the Effect of Wingtip Propellers on Drag Through In-Flight Measurements“, Journal of Aircraft, 2021, doi: 10.2514/1.C036490.
    18. 293. T. Cunis, J.-P. Condomines, und L. Burlion, „Local stability analysis for large polynomial spline systems“, Automatica, Bd. 113, S. 108773, 2020, doi: 10.1016/j.automatica.2019.108773.
    19. 292. F. A. King, A. Steinwandel, und W. Fichter, „Generalization of Active In-Flight Tracking Control to the N-Bladed Helicopter Rotor“, Journal of Guidance, Control, and Dynamics, Bd. 43, Nr. 7, Art. Nr. 7, Juli 2020, doi: 10.2514/1.g004087.
    20. 291. T. Cunis, J. P. Condomines, und L. Burlion, „Sum-of-squares flight control synthesis for deep-stall recovery“, Journal of Guidance, Control, and Dynamics, Bd. 43, Nr. 8, Art. Nr. 8, 2020, doi: 10.2514/1.G004753.
    21. 290. T. Cunis, J.-P. Condomines, L. Burlion, und A. la Cour-Harbo, „Dynamic Stability Analysis of Aircraft Flight in Deep Stall“, Journal of Aircraft, Bd. 57, Nr. 1, Art. Nr. 1, 2020, doi: 10.2514/1.C035455.
    22. 289. T. Rath und W. Fichter, „Flight Control Design for the Systematic Improvement of Ride Qualities“, Journal of the American Helicopter Society, 2020, doi: https://doi.org/10.4050/JAHS.66.022003.
    23. 288. J. Stephan, O. Pfeifle, S. Notter, F. Pinchetti, und W. Fichter, „Precise Tracking of Extended Three-Dimensional Dubins Paths for Fixed-Wing Aircraft“, Journal of Guidance, Control, and Dynamics, Bd. 43, Nr. 12, Art. Nr. 12, Dez. 2020, doi: doi/abs/10.2514/1.G005240.
    24. 287. R. Tallamraju u. a., „AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning“, IEEE Robotics and Automation Letters, Bd. 5, Nr. 4, Art. Nr. 4, Okt. 2020, doi: https://doi.org/10.1109/LRA.2020.3013906.
    25. 286. R. Geshnizjani, A. Kornienko, T. Ziegler, J. Löhr, und W. Fichter, „Torque Optimal Steering of Control Moment Gyroscopes for Agile Spacecraft“, Journal of Guidance, Control, and Dynamics, S. 1--12, Dez. 2020, doi: 10.2514/1.g005118.
    26. 285. S. Notter, P. Groß, P. Schrapel, und W. Fichter, „Multiple Thermal Updraft Estimation and Observability Analysis“, Journal of Guidance, Control, and Dynamics, Bd. 43, Nr. 3, Art. Nr. 3, März 2020, doi: 10.2514/1.G004205.
    27. 284. A. Steinwandel und W. Fichter, „Linear Analysis of Vibration Reduction Using an Active N-Bladed Helicopter Rotor“, Journal of Guidance, Control, and Dynamics, Bd. 42, Nr. 3, Art. Nr. 3, März 2019, doi: 10.2514/1.g003512.
    28. 283. L. Schmitt und W. Fichter, „Globally Valid Posterior Cramér-Rao Bound for Three-Dimensional Bearings-Only Filtering“, IEEE Transactions on Aerospace and Electronic Systems, Bd. 55, Nr. 4, Art. Nr. 4, Aug. 2019, doi: 10.1109/TAES.2018.2881352.
    29. 282. T. Cunis, L. Burlion, und J.-P. P. Condomines, „Piecewise polynomial modeling for control and analysis of aircraft dynamics beyond stall“, Journal of Guidance, Control, and Dynamics, Bd. 42, Nr. 4, Art. Nr. 4, 2019, doi: 10.2514/1.G003618.
    30. 281. R. Tallamraju u. a., „Active Perception based Formation Control for Multiple Aerial Vehicles“, IEEE Robotics and Automation Letters, Bd. 4, Nr. 4, Art. Nr. 4, Okt. 2019, doi: 10.1109/LRA.2019.2932570.
    31. 280. A. Joos und W. Fichter, „Nonlinear Model Predictive Control Parameters and Path Geometry“, Journal of Guidance, Control, and Dynamics, Bd. 42, Nr. 1, Art. Nr. 1, Jan. 2019, doi: 10.2514/1.g003655.
    32. 279. J. Stephan, L. Schmitt, und W. Fichter, „Linear Parameter-Varying Control for Quadrotors in Case of Complete Actuator Loss“, Journal of Guidance, Control, and Dynamics, Bd. 41, Nr. 10, Art. Nr. 10, Juni 2018, doi: 10.2514/1.G003441.
    33. 278. E. Price u. a., „Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles“, IEEE Robotics and Automation Letters, Bd. 3, Nr. 4, Art. Nr. 4, Okt. 2018, doi: 10.1109/LRA.2018.2850224.
    34. 277. A. Schleicher u. a., „In-orbit performance of the LISA Pathfinder drag-free and attitude control system“, CEAS Space Journal, Bd. 10, S. 471–485, 2018, doi: 10.1007/s12567-018-0204-x.
    35. 276. T. Cunis, „The pwpfit Toolbox for Polynomial and Piece-wise Polynomial Data Fitting“, IFAC-PapersOnLine, Bd. 51, Nr. 15, Art. Nr. 15, 2018, doi: 10.1016/j.ifacol.2018.09.204.
    36. 275. F. Pinchetti, A. Joos, und W. Fichter, „Efficient Continuous Curvature Path Generation with Pseudo-Parameterized Algebraic Splines“, CEAS Aeronautical Journal, Bd. 9, Nr. 3, Art. Nr. 3, Mai 2018, doi: 10.1007/s13272-018-0306-3.
    37. 274. J. Stephan und W. Fichter, „Fast Exact Redistributed Pseudoinverse Method for Linear Actuation Systems“, IEEE Transactions on Control Systems Technology, Bd. 27, Nr. 1, Art. Nr. 1, 2017, doi: 10.1109/TCST.2017.2765622.
    38. 273. A. Ahmad, G. Lawless, und P. Lima, „An Online Scalable Approach to Unified Multirobot Cooperative Localization and Object Tracking“, IEEE Transactions on Robotics (T-RO), Bd. 33, S. 1184–1199, Okt. 2017, doi: 10.1109/TRO.2017.2715342.
    39. 272. L. Schmitt und W. Fichter, „Cramer-Rao Lower Bound for State-Constrained Nonlinear Filtering“, IEEE signal processing letters, Bd. 24, Nr. 12, Art. Nr. 12, 2017, doi: 10.1109/LSP.2017.2764540.
    40. 271. L. Schmitt und W. Fichter, „Continuous Singularity Free Approach to the Three-Dimensional Bearings-Only Tracking Problem“, Journal of Guidance, Control, and Dynamics, Bd. 39, Nr. 12, Art. Nr. 12, 2016, doi: 10.2514/1.G000362.
    41. 270. M. Armano u. a., „Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results“, Phys. Rev. Lett., Bd. 116, Nr. 23, Art. Nr. 23, Juni 2016, doi: 10.1103/PhysRevLett.116.231101.
    42. 269. A. Ahmad und H. Bülthoff, „Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception“, Robotics and Autonomous Systems, Bd. 83, S. 275--286, 2016, doi: 10.1016/j.robot.2016.06.002.
    43. 268. M. Trittler, T. Rothermel, und W. Fichter, „Autopilot for Landing Small Fixed-Wing Unmanned Aerial Vehicles with Optical Sensors“, Journal of Guidance, Control, and Dynamics, Bd. 39, Nr. 9, Art. Nr. 9, 2016, doi: 10.2514/1.G000261.
    44. 267. A. Joos, C. Seiferth, L. Schmitt, und W. Fichter, „Parameters for Nonlinear Model Predictive Control in Unmanned Aerial Vehicle Path-Planning Applications“, Journal of Guidance, Control, and Dynamics, Bd. 40, Nr. 2, Art. Nr. 2, 2016, doi: 10.2514/1.G000311.
    45. 266. C. Seiferth, A. Joos, M. Frangenberg, und W. Fichter, „Predictive Motion Planning with Pipelined Feature-Based Obstacle Avoidance“, Journal of Guidance, Control and Dynamics, Bd. 39, Nr. 4, Art. Nr. 4, Apr. 2016, doi: 10.2514/1.G001134.
    46. 265. J. Grzymisch und W. Fichter, „Optimal Rendezvous Guidance with Enhanced Bearings-Only Observability“, Journal of Guidance, Control, and Dynamics, Bd. 38, Nr. 6, Art. Nr. 6, Apr. 2015, doi: 10.2514/1.G000822.
    47. 264. P. Lima u. a., „Formation control driven by cooperative object tracking“, Robotics and Autonomous Systems, Bd. 63, Nr. 1, Art. Nr. 1, 2015, doi: 10.1016/j.robot.2014.08.018.
    48. 263. J. Grzymisch und W. Fichter, „Nonlinear pseudo-measurement filtering for in-orbit bearings-only navigation“, IEEE Transactions on Aerospace and Electronic Systems, Bd. 51, Nr. 4, Art. Nr. 4, Okt. 2015, doi: 10.1109/TAES.2015.130823.
    49. 262. F. Weimer, M. Frangenberg, und W. Fichter, „Pipelined Particle Filter with Nonobservability Measure for Attitude and Velocity Estimation“, Journal of Guidance, Control, and Dynamics, Bd. 38, Nr. 3, Art. Nr. 3, 2015, doi: 10.2514/1.G000238.
    50. 261. L. Schmitt und W. Fichter, „Observability Criteria and Null-Measurement Kalman Filter for Vision-Aided Inertial Navigation“, Journal of Guidance, Control, and Dynamics, Bd. 39, Nr. 4, Art. Nr. 4, 2015, doi: 10.2514/1.G001146.
    51. 260. J.-B. Maurice, F. A. King, W. Fichter, A. Rabourdin, und P. K. Konstanzer, „Helicopter Rotor In-Plane Stability Enhancement Using Trailing-Edge Flaps“, Journal of Guidance, Control, and Dynamics, Bd. 36, Nr. 5, Art. Nr. 5, 2014, doi: 10.2514/1.57323.
    52. 259. D. Gerardi u. a., „Invited Article: Advanced drag-free concepts for future space-based interferometers: acceleration noise performance“, Review of Scientific Instruments, Bd. 85, Nr. 1, Art. Nr. 1, Jan. 2014, doi: 10.1063/1.4862199.
    53. 258. T. Ziegler, P. Bergner, G. Hechenblaikner, N. Brandt, und W. Fichter, „Modeling and Performance of Contact-Free Discharge Systems for Space Inertial Sensors“, IEEE Trans. Aerospace and Electronic Systems, Bd. 50, Nr. 2, Art. Nr. 2, 2014, doi: 10.1109/TAES.2014.120661.
    54. 257. N. Wildmann, M. Hofsäß, F. Weimer, A. Joos, und J. Bange, „MASC - a small Remotely Piloted Aircraft (RPA) for wind energy research“, Advances in Science and Research, Bd. 11, Nr. 1, Art. Nr. 1, 2014, doi: 10.5194/asr-11-55-2014.
    55. 256. F. A. King, J.-B. Maurice, W. Fichter, O. Dieterich, und P. Konstanzer, „In-Flight Rotorblade Tracking Control for Helicopters Using Active Trailing-Edge Flaps“, Journal of Guidance, Control, and Dynamics, Bd. 37, Nr. 2, Art. Nr. 2, 2014, doi: doi: 10.2514/1.59475.
    56. 255. J.-B. Maurice, F. A. King, und W. Fichter, „Derivation and Validation of a Helicopter Rotor Model with Trailing Edge Flaps“, Journal of Guidance, Control, and Dynamics, Bd. 36, Nr. 5, Art. Nr. 5, 2014, doi: 10.2514/1.59102.
    57. 254. L. Schmitt und W. Fichter, „A Collision Avoidance Framework for Small Fixed-Wing Unmanned Aerial Vehicles“, Journal of Guidance, Control, and Dynamics, Bd. 37, Nr. 4, Art. Nr. 4, Juni 2014, doi: 10.2514/1.G000226.
    58. 253. J. Grzymisch und W. Fichter, „Analytic Optimal Observability Maneuvers for In-Orbit Bearings-Only Rendezvous“, Journal of Guidance, Control and Dynamics., Bd. 37, Nr. 5, Art. Nr. 5, 2014, doi: 10.2514/1.G000612.
    59. 252. J. Grzymisch und W. Fichter, „Observability Criteria and Unobservable Maneuvers for In-Orbit Bearings-Only Navigation“, Journal of Guidance, Control, and Dynamics, Bd. 37, Nr. 4, Art. Nr. 4, 2014, doi: 10.2514/1.62476.
    60. 251. A. Ahmad, J. Xavier, J. Santos-Victor, und P. Lima, „3D to 2D bijection for spherical objects under equidistant fisheye projection“, Computer Vision and Image Understanding, Bd. 125, S. 172--183, Aug. 2014, doi: 10.1016/j.cviu.2014.04.004.
    61. 250. A. Grynagier, T. Ziegler, und W. Fichter, „Identification of Dynamic Parameters for a One-Axis Drag-Free Gradiometer“, IEEE Transactions on Aerospace and Electronic Systems, Bd. 49, S. 341–355, Jan. 2013, doi: 10.1109/TAES.2013.6404107.
    62. 249. A. Ahmad und P. Lima, „Multi-robot cooperative spherical-object tracking in 3D space based on particle filters“, Robotics and Autonomous Systems, Bd. 61, Nr. 10, Art. Nr. 10, Okt. 2013, doi: 10.1016/j.robot.2012.12.008.
    63. 248. T. Ott, W. Fichter, S. Bennani, und S. Winkler, „Precision pointing H∞ control design for absolute, window-, and stability-time errors“, CEAS Space Journal, Bd. 4, Nr. 1, Art. Nr. 1, Juni 2013, doi: 10.1007/s12567-012-0028-z.
    64. 247. J.-B. Maurice, R. Farolfi, F. Saupe, F. A. King, und W. Fichter, „Robust Stability Analysis of a Linear Time-Periodic Active Helicopter Rotor“, Journal of Guidance, Control, and Dynamics, Bd. 35, Nr. 5, Art. Nr. 5, 2012, doi: 10.2514/1.54232.
    65. 246. R. Saage, R. Ross, W. Fichter, und A. Schleicher, „Closed-Loop Specifications for Spacecraft Control Under Micropropulsion Constraints“, Journal of Guidance, Control, and Dynamics, Bd. 35, Nr. 5, Art. Nr. 5, 2012, doi: doi: 10.2514/1.55550.
    66. 245. F. Antonucci u. a., „The lisa pathfinder mission“, Classical and Quantum Gravity, Bd. 29, Nr. 12, Art. Nr. 12, 2012.
    67. 244. F. Antonucci u. a., „From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion“, Classical and Quantum Gravity, Bd. 28, Nr. 9, Art. Nr. 9, 2011.
    68. 243. F. Antonucci u. a., „LISA Pathfinder: mission and status“, Classical and Quantum Gravity, Bd. 28, Nr. 9, Art. Nr. 9, 2011.
    69. 242. F. Antonucci u. a., „LISA Pathfinder data analysis“, Classical and Quantum Gravity, Bd. 28, Nr. 9, Art. Nr. 9, 2011, doi: 10.1088/0264-9381/28/9/094006.
    70. 241. H. Audley u. a., „The LISA Pathfinder interferometry hardware and system testing“, Classical and Quantum Gravity, Bd. 28, Nr. 9, Art. Nr. 9, 2011.
    71. 240. N. Haala, M. Cramer, F. Weimer, und M. Trittler, „PERFORMANCE TEST ON UAV-BASED PHOTOGRAMMETRIC DATA COLLECTION“, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bd. XXXVIII-1-C22, S. 7–12, 2011, doi: 10.5194/isprsarchives-XXXVIII-1-C22-7-2011.
    72. 239. A. Grynagier, W. Fichter, und S. Vitale, „Parabolic Drag-Free Flight, Actuation with Kicks, Spectral Analysis with Gaps“, Space Science Reviews, Bd. 151, Nr. 1, Art. Nr. 1, März 2010, doi: 10.1007/s11214-009-9598-2.
    73. 238. T. Ziegler und W. Fichter, „Identification Algorithms for Micro-Propulsion System Parameters Using Drag-Free Test Masses“, Space Science Reviews, Bd. 151, Nr. 1, Art. Nr. 1, März 2010, doi: 10.1007/s11214-009-9593-7.
    74. 237. A. Monsky u. a., „The first mock data challenge for LISA Pathfinder“, Classical and Quantum Gravity, Bd. 26, Nr. 9, Art. Nr. 9, 2009.
    75. 236. M. Hewitson u. a., „Data analysis for the LISA Technology Package“, Classical and Quantum Gravity, Bd. 26, Nr. 9, Art. Nr. 9, 2009.
    76. 235. M. Armano u. a., „LISA Pathfinder: the experiment and the route to LISA“, Classical and Quantum Gravity, Bd. 26, Nr. 9, Art. Nr. 9, 2009.
    77. 234. A. Grynagier, W. Fichter, und S. Vitale, „The LISA Pathfinder drift mode: implementation solutions for a robust algorithm“, Classical and Quantum Gravity, Bd. 26, Nr. 9, Art. Nr. 9, 2009, doi: 10.1088/0264-9381/26/9/094007.
    78. 233. W. Fichter, A. Schleicher, und S. Vitale, „Drag-Free Control Design with Cubic Test Masses“, Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, S. 361--378, 2008, doi: 10.1007/978-3-540-34377-6_17.
    79. 232. S. Anza u. a., „The LTP experiment on the LISA Pathfinder mission“, Classical and Quantum Gravity, Bd. 22, Nr. 10, Art. Nr. 10, 2005, doi: 10.1088/0264-9381/22/10/001.
    80. 231. W. Fichter, P. Gath, S. Vitale, und D. Bortoluzzi, „LISA Pathfinder drag-free control and system implications“, Classical and Quantum Gravity, Bd. 22, Nr. 10, Art. Nr. 10, 2005.
    81. 230. N. Brandt, W. Fichter, M. Kersten, S. Lucarelli, und F. Montemurro, „LISA Pathfinder E2E performance simulation: optical and self-gravity stability analysis“, Classical and Quantum Gravity, Bd. 22, Nr. 10, Art. Nr. 10, 2005, doi: 10.1088/0264-9381/22/10/049.
    82. 229. W. Grimm, J. G. van der Meulen, und A. J. Roenneke, „An Optimal Update Scheme for Drag Reference Profiles in an Entry Guidance“, Journal of Guidance, Control, and Dynamics, Bd. 26, Nr. 5, Art. Nr. 5, Sep. 2003, doi: 10.2514/2.5123.
    83. 228. T. Mannchen, D. G. Bates, und I. Postlethwaite, „Modeling and Computing Worst-Case Uncertainty Combinations for Flight Control Systems Analysis“, Journal of Guidance, Control, and Dynamics, Bd. 25, Nr. 6, Art. Nr. 6, Nov. 2002, doi: 10.2514/2.5007.
    84. 227. J. T. Betts und S. O. Erb, „Computing Optimal Low Thrust Trajectories to the Moon“, Journal of Applied Dynamical Systems, Bd. 2, Nr. 2, Art. Nr. 2, 2002.
    85. 226. T. Mannchen und K. H. Well, „$\mu$-Analysis of Stability Margin Criteria“, Advanced Techniques for Clearance of Flight Control Laws, S. 285--311, 2002, doi: 10.1007/3-540-45864-6_17.
    86. 225. W. Grimm und M. Hans, „Time-Optimal Turn to a Heading: the Complete Analytic Solution“, Journal of Guidance, Control, and Dynamics, Bd. 21, Nr. 6, Art. Nr. 6, 1998, doi: 10.2514/2.4328.
    87. 224. W. Grimm und A. Markl, „Adjoint Estimation from a Direct Multiple Shooting Method“, Journal of Optimization Theory and Applications, Bd. 92, Nr. 2, Art. Nr. 2, Feb. 1997, doi: 10.1023/A:1022650928786.
    88. 223. W. Grimm und A. Markl, „How to Estimate Adjoints from a Direct Multiple Shooting Method“, JOTA Journal of Optimization Theory and Applications, 1995.
    89. 222. A. J. Roenneke und P. J. Cornwell, „Trajectory Control for a Low-Lift Reentry Vehicle“, Journal of Guidance, Control, and Dynamics, Bd. 16, Nr. 5, Art. Nr. 5, Sep. 1993, doi: https://doi.org/10.2514/6.1992-1146.
    90. 221. A. J. Roenneke und A. Markl, „Reentry Control to a Drag-vs-Energy Profile“, Journal of Guidance, Control and Dynamics, Bd. 17, Nr. 5, Art. Nr. 5, 1993, doi: 10.2514/3.21290.
    91. 220. M. H. Breitner, H. J. Pesch, und W. Grimm, „Complex differential games of pursuit-evasion type with state constraints, part 1: Necessary conditions for optimal open-loop strategies“, Journal of Optimization Theory and Applications, Bd. 78, Nr. 3, Art. Nr. 3, Sep. 1993, doi: 10.1007/BF00939876.
  2. Konferenzen

    1. 219. T. Richter, B. Rothaupt, W. Fichter, und B. Grebing, „System Identification of a Coaxial Ultralight Helicopter“, Okt. 2020.
    2. 218. N. Saini u. a., „Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles“, in Proceedings 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Okt. 2019, S. 823--832. doi: 10.1109/ICCV.2019.00091.
    3. 217. R. Tallamraju, S. Rajappa, M. J. Black, K. Karlapalem, und A. Ahmad, „Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios“, in 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Aug. 2018, S. 1–8. doi: 10.1109/SSRR.2018.8468655.
    4. 216. A. Ahmad, E. Ruff, und H. Bülthoff, „Dynamic baseline stereo vision-based cooperative target tracking“, in 19th International Conference on Information Fusion, Juli 2016, S. 1728–1734.
    5. 215. F. Pinchetti, J. Stephan, A. Joos, und W. Fichter, „FlySmart - Automatic Take-Off and Landing of an EASA CS-23 Aircraft“, 2016.
    6. 214. A. Ahmad und H. Bülthoff, „Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception“, in 7th European Conference on Mobile Robots, Sep. 2015, S. 1–8. doi: 10.1109/ECMR.2015.7324197.
    7. 213. R. Dwiputra u. a., „Overview on the RoCKIn@Work Challenge“, Juni 2014.
    8. 212. S. Schneider u. a., „The RoCKIn@Home User Story“, Juni 2014.
    9. 211. M. Niendorf, M. Gros, A. Schöttl, und W. Fichter, „Local Planning for a Fixed-Wing MAV with a Tree-Based Planner and Motion Primitives“, Bremen, Germany, Sep. 2011.
    10. 210. F. Weimer, M. Trittler, A. Joos, M. Gros, A. Posch, und W. Fichter, „FPGA-Based Onboard Computer System for Mini Aerial Vehicles“, Braunschweig, Germany, Juli 2010.
    11. 209. R. Saage, A. Schleicher, und W. Fichter, „Predicted Drag-Free Performance of LISA Pathfinder and Operational Optimization Means“, Stanford University, USA, Juli 2010.
    12. 208. A. Wiegand, A. Markl, und K. H. Well, „ALTOS - ESA’s Trajectory Optimization Tool Applied to Reentry Vehicle Trajectory Design“, in International Astronautical Congress, Amsterdam, Netherlands, Okt. 1999, Bd. 50.
    13. 207. E. Wallner, J. Burkhardt, F. Zimmermann, U. M. Schöttle, und Klaus. H. Well, „A Guidance and Control Concept for the X-38 Reentry Vehicle“, in International Astronautical Congress, Amsterdam, Netherlands, 1999, Bd. 50.
    14. 206. A. J. Roenneke, „Robuste Bahnfolgeregelung für den Wiedereintritt von Kapseln“, Okt. 1997.
    15. 205. M. Hanel und Klaus. H. Well, „Optimierte Sensorpositionierung zur Regelung elastischer Strukturen“, Munich, Germany, Okt. 1997.
    16. 204. Klaus. H. Well, A. Markl, und K. Mehlem, „ALTOS - A Trajectory Analysis and Optimization Software for Launch- and Reentry Vehicles“, in International Astronautical Congress, Torino, Italy, Okt. 1997, Bd. 48.
    17. 203. B. G. Kämpf und Klaus. H. Well, „Dynamics and Control of a Small Airship“, in International Airship Conference, Friedrichshafen, Germany, Juni 1996, Bd. 2.
    18. 202. J. Schuler und Klaus. H. Well, „Reglerentwurf für eine integrale Flugmechanik- und Aeroelastikregelung eines Großraumflugzeuges“, Dresden, Germany, Sep. 1996.
    19. 201. W. Grimm und S. Zegoulli, „Optimal Control of a Capsule in the Super-/Subsonic Region“, Hamburg, Germany, Juli 1995.
    20. 200. Klaus. H. Well und A. J. Roenneke, „Vom Weltraum aufs Fußballfeld - geht das?“, 1994.
  3. Buchbeiträge

    1. 199. T. Souanef, A. Boubakir, und W. Fichter, „L1 Adaptive Control of Systems with Disturbances of Unknown Bounds“, in Advances in Aerospace Guidance, Navigation and Control, Springer, 2015, S. 151–165.
    2. 198. T. Souanef und W. Fichter, „Fault Tolerant L1 Adaptive Control Based on Degraded Models“, in Advances in Aerospace Guidance, Navigation and Control, Nr. 135–149, Springer, 2015.
    3. 197. C. Böhm, M. Merk, W. Fichter, und F. Allgöwer, „Spacecraft Rate Damping with Predictive Control Using Magnetic Actuators Only“, in Nonlinear Model Predictive Control: Towards New Challenging Applications, L. Magni, D. M. Raimondo, und F. Allgöwer, Hrsg. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, S. 511--520. doi: 10.1007/978-3-642-01094-1_41.
    4. 196. W. Grimm und W. Rotärmel, „Integrated Guidance and Control for Entry Vehicles“, in From Nano to Space: Applied Mathematics Inspired by Roland Bulirsch, M. H. Breitner, G. Denk, und P. Rentrop, Hrsg. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, S. 295--308. doi: 10.1007/978-3-540-74238-8_21.
    5. 195. T. Mannchen und K. H. Well, „Uncertainty Bands Approach to LFT Modelling“, in Advanced Techniques for Clearance of Flight Control Laws, Bd. 283/2002, C. Fielding, A. Varga, S. Bennani, und M. Selier, Hrsg. Springer, 2002.
    6. 194. M. Paus, W. Grimm, und K. H. Well, „Real-Time Optimisation for the Guidance of Dynamic Systems“, in Progress in Industrial Mathematics at ECMI 94, H. Neunzert, Hrsg. Wiesbaden: Vieweg+Teubner Verlag, 1996, S. 32--39. doi: 10.1007/978-3-322-82967-2_5.
    7. 193. A. J. Roenneke und K. H. Well, „Linear Optimal Control for Reentry Flight. In: Control Applications of Optimization“, in Control Applications of Optimization, Bd. 115, R. Bulirsch und D. Kraft, Hrsg. New York, USA: Birkhäuser, 1994.
    8. 192. C. Jänsch, K. Schnepper, und K. H. Well, „Multi-Phase Trajectory Optimization Methods with Applications to Hypersonic Vehicles“, in Applied Mathematics in Aerospace Science and Engineering, A. Miele und A. Salvetti, Hrsg. Boston, MA: Springer US, 1994, S. 133--164. doi: 10.1007/978-1-4757-9259-1_8.
  4. Konferenzbeiträge

    1. 191. T. Cunis und B. Legat, „Sequential sum-of-squares programming for analysis of nonlinear systems“, San Diego, CA, Mai 2023. [Online]. Verfügbar unter: http://arxiv.org/abs/2210.02142
    2. 190. F. Schimpf, J. Olucak, und W. Fichter, „Robust Landing Site Detection for Flight over Small Solar System Bodies“, San Diego, Jan. 2022. doi: 10.2514/6.2022-0955.
    3. 189. S. Notter, G. Müller, und W. Fichter, „Integrated Updraft Localization and Exploitation: End-to-End Type Reinforcement Learning Approach“, Berlin, Mai 2022. [Online]. Verfügbar unter: https://eurognc.ceas.org/archive/EuroGNC2022/html/CEAS-GNC-2022-077.html
    4. 188. R. M. Bertolin, G. C. Barbosa, T. Cunis, I. Kolmanovsky, und C. E. S. Cesnik, „Gust Rejection of a Supersonic Aircraft During Final Approach“, San Diego, CA, 2022. doi: 10.2514/6.2022-2174.
    5. 187. A. Steinleitner, V. Frenzel, O. Pfeifle, J. Denzel, und W. Fichter, „Automatic Take-Off and Landing of Tailwheel Aircraft with Incremental Nonlinear Dynamic Inversion“, San Diego, Jan. 2022. doi: 10.2514/6.2022-1228.
    6. 186. S. Özkurt, W. Fichter, C. Fischer, und H. Bülthoff, „On the Impact of Flight Control Systems on Kinetosis of Helicopter Passengers“, Fort Worth, Texas, USA, Mai 2022. [Online]. Verfügbar unter: https://vtol.org/store/product/on-the-impact-of-flight-control-systems-on-kinetosis-of-helicopter-passengers-17522.cfm
    7. 185. B. Rothaupt, B. Grebing, und W. Fichter, „Model-Based Optimization of a Tethering Device for Ultralight Helicopters“, Fort Worth Convention Center, Fort Worth, Texas, USA, Mai 2022. doi: 10.4050/f-0078-2022-17514.
    8. 184. R. Schieni, M. Simsek, T. Cunis, O. Bilgen, und L. Burlion, „Control of Bistable Structures Using a Modified Hybrid Position Feedback Controller“, San Diego, CA, 2022. doi: 10.2514/6.2022-0922.
    9. 183. J. Olucak, F. Schimpf, F. Pinchetti, und W. Fichter, „Energy Aware Trajectory Generation for a Novel Cometary Lander Concept“, San Diego, Jan. 2022. doi: 10.2514/6.2022-0954.
    10. 182. M. Patel, A. Bandopadhyay, und A. Ahmad, „Collaborative Mapping of Archaeological Sites Using Multiple UAVs“, in Intelligent Autonomous Systems 16, Cham, 2022, S. 54--70. doi: https://doi.org/10.1007/978-3-030-95892-3_5.
    11. 181. E. Price, Y. T. Liu, M. J. Black, und A. Ahmad, „Simulation and Control of Deformable Autonomous Airships in Turbulent Wind“, in Intelligent Autonomous Systems 16, Cham, 2022, S. 608--626. doi: https://doi.org/10.1007/978-3-030-95892-3_46.
    12. 180. M. Schneider und W. Fichter, „Multi-Hypothesis Guidance With Interacting Multiple Model Filter“, San Diego, Jan. 2022. doi: 10.2514/6.2022-1846.
    13. 179. T. Cunis, I. Kolmanovsky, und C. E. S. Cesnik, „Control Co-Design Optimization: Integrating nonlinear controllability into a multidisciplinary design process“, San Diego, CA, 2022. doi: 10.2514/6.2022-2176.
    14. 178. O. Pfeifle und W. Fichter, „Time-Optimal Incremental Nonlinear Dynamic Inversion through Deadbeat Control“, San Diego, Jan. 2022. doi: 10.2514/6.2022-1596.
    15. 177. F. Hein, R. Wiedenroth, S. Notter, und W. Fichter, „Flight Mechanical Analysis and Nonlinear Controller Design for a 4-Line Kite“, San Diego, Jan. 2022. doi: 10.2514/6.2022-1229.
    16. 176. M. Welsch und W. Fichter, „Spline-based Path Tracking for VTOL Vehicles“, San Diego, Jan. 2022. doi: 10.2514/6.2022-1595.
    17. 175. T. Cunis, „Local Stability Analysis for Sensor-based Inexact Feedback Linearization“, Berlin, 2022. [Online]. Verfügbar unter: https://eurognc.ceas.org/archive/EuroGNC2022/html/CEAS-GNC-2022-052.html
    18. 174. N. Wettengl, S. Notter, und W. Fichter, „Enhancing Updraft Observability by Optimal Path Planning“, San Diego, Jan. 2022. doi: 10.2514/6.2022-2216.
    19. 173. F. Schimpf, S. Notter, P. Groß, und W. Fichter, „Multi-Agent Reinforcement Learning for Thermalling in Updrafts“, Jan. 2021. doi: 10.2514/6.2021-0864.
    20. 172. B. Lai, T. Cunis, und L. Burlion, „Nonlinear Trajectory Based Region of Attraction Estimation for Aircraft Dynamics Analysis“, Virtual, 2021. doi: 10.2514/6.2021-0253.
    21. 171. S. Notter, F. Schimpf, und W. Fichter, „Hierarchical Reinforcement Learning Approach Towards Autonomous Cross-Country Soaring“, Jan. 2021. doi: 10.2514/6.2021-2010.
    22. 170. O. Pfeifle und W. Fichter, „Energy Optimal Control Allocation for INDI Controlled Transition Aircraft“, 2021. doi: 10.2514/6.2021-1457.
    23. 169. M. R. Schlichting, S. Notter, und W. Fichter, „LSTM-Based Spatial Encoding: Explainable Path Planning for Time-Variant Multi-Agent Systems“, Virtual, Jan. 2021. doi: 10.2514/6.2021-1860.
    24. 168. E. Price, Y. T. Liu, M. J. Black, und A. Ahmad, „Simulation and Control of Deformable Autonomous Airships in Turbulent Wind“, Juni 2021.
    25. 167. O. Pfeifle u. a., „Distributed Electric Propulsion for Yaw Control: Testbeds, Control Approach, and Flight Testing“, 2021. doi: 10.2514/6.2021-3192.
    26. 166. M. Welsch und W. Fichter, „Ground-Based Turn Coordination for VTOL Vehicles with Wind Compensation“, gehalten auf der AIAA Scitech 2021 Forum, Virtual, Jan. 2021. doi: 10.2514/6.2021-0255.
    27. 165. E. Bonetto, P. Goldschmid, M. J. Black, und A. Ahmad, „Active Visual SLAM with Independently Rotating Camera“, in 2021 European Conference on Mobile Robots (ECMR), 2021, S. 1–8. doi: 10.1109/ECMR50962.2021.9568791.
    28. 164. B. Rothaupt, S. Notter, und W. Fichter, „Autonomous Soaring Policy Initialization Through Value Iteration“, Virtual, Jan. 2021. doi: 10.2514/6.2021-2012.
    29. 163. T. Skibik, D. Liao-McPherson, T. Cunis, I. Kolmanovsky, und M. M. Nicotra, „Feasibility Governor for Linear Model Predictive Control“, in Proceedings of the American Control Conference, New Orleans, LA, 2021, S. 2329--2335. doi: 10.23919/ACC50511.2021.9483054.
    30. 162. A. Vigneron, S. Delchambre, T. Ziegler, und W. Fichter, „A Transient-Suppressing Initialization for Low-Bandwidth Attitude Controllers“, Virtual, Jan. 2021. doi: 10.2514/6.2021-1563.
    31. 161. M. Welsch und W. Fichter, „Control of Large Multicopters with Rate-Limited Electric Motors“, gehalten auf der AIAA Scitech 2020 Forum, Orlando, FL, Jan. 2020. doi: 10.2514/6.2020-1832.
    32. 160. T. Richter, B. Rothaupt, A. Steinwandel, W. Fichter, und B. Grebing, „Stability Augmentation System for Coaxial Ultralight Helicopters“, Okt. 2020. [Online]. Verfügbar unter: https://vtol.org/store/product/stability-augmentation-system-for-coaxial-ultralight-helicopters-16426.cfm
    33. 159. J. Stephan und W. Fichter, „Active Battery Charge Drift Stabilization for Redundant Multirotors“, Orlando, FL, Jan. 2020. doi: 10.2514/6.2020-1833.
    34. 158. S. Özkurt u. a., „From Helicopter Vibrations to Passenger Perceptions: A Closer Look on Standards“, Virtual, Okt. 2020.
    35. 157. M. Friedrich und W. Fichter, „Multibody model of a large multicopter with arbitrary propeller axes of rotation“, Orlando, FL, Jan. 2020. doi: 10.2514/6.2020-1505.
    36. 156. S. Özkurt u. a., „From Helicopter Vibrations to Passenger Perceptions: A Closer Look on Standards“, Virtual, Okt. 2020.
    37. 155. T. Cunis, D. Liao-McPherson, I. Kolmanovsky, und L. Burlion, „Model-Predictive Spiral and Spin Upset Recovery Control for the Generic Transport Model Simulation“, in 2020 IEEE Conference on Control Technology and Applications, Montréal, 2020, S. 1--7. doi: 10.1109/CCTA41146.2020.9206158.
    38. 154. J. Stephan, S. Notter, O. Pfeifle, F. Pinchetti, und W. Fichter, „Spline Trajectory Planning and Guidance for Fixed-Wing Drones“, Orlando, FL, 2020. doi: 10.2514/6.2020-0372.
    39. 153. R. Tallamraju, D. Salunkhe, S. Rajappa, A. Ahmad, K. Karlapalem, und S. V. Shah, „Motion Planning for Multi-Mobile-Manipulator Payload Transport Systems“, in 15th IEEE International Conference on Automation Science and Engineering, Aug. 2019, S. 1469--1474. doi: 10.1109/COASE.2019.8842840.
    40. 152. A. Ahmad u. a., „AirCap -- Aerial Outdoor Motion Capture“, Nov. 2019.
    41. 151. O. Pfeifle u. a., „Precision performance measurements of fixed-wing aircraft with wing tip propellers“, Dallas, Texas, Juni 2019. doi: 10.2514/6.2019-3088.
    42. 150. S. Notter, M. Zürn, P. Groß, und W. Fichter, „Reinforced Learning to Cross-Country Soar in the Vertical Plane of Motion“, San Diego, California, Jan. 2019. doi: 10.2514/6.2019-1420.
    43. 149. R. Geshnizjani, A. Kornienko, T. Ziegler, J. Loehr, und W. Fichter, „Optimal Initial Gimbal Angles for Agile Slew Maneuvers with Control Moment Gyroscopes“, gehalten auf der AIAA Scitech 2019 Forum, San Diego, Jan. 2019. doi: 10.2514/6.2019-0936.
    44. 148. M. Karásek u. a., „Accurate position control of a flapping-wing robot enabling free-flight flow visualisation in a wind tunnel“, in International Journal of Micro Air Vehicles, 2019, Bd. 11. doi: 10.1177/1756829319833683.
    45. 147. T. Cunis, D. Liao-McPherson, J. P. Condomines, L. Burlion, und I. Kolmanovsky, „Economic Model-Predictive Control Strategies for Aircraft Deep-stall Recovery with Stability Guarantees“, in Proceedings of the IEEE Conference on Decision and Control, Nice, 2019, S. 157--162. doi: 10.1109/CDC40024.2019.9030207.
    46. 146. P. Groß, S. Notter, und W. Fichter, „Estimating Total Energy Compensated Climb Rates from Position Trajectories“, Jan. 2019. doi: 10.2514/6.2019-0828.
    47. 145. S. Notter, P. Schrapel, P. Groß, und W. Fichter, „Estimation of Multiple Thermal Updrafts Using a Particle Filter Approach“, Kissimmee, Florida, Jan. 2018. doi: 10.2514/6.2018-1854.
    48. 144. M. Friedrich und W. Fichter, „Optimization of the mass ratio for a general multi-rotor aircraft“, Kissimmee, Florida, Jan. 2018. doi: 10.2514/6.2018-0531.
    49. 143. T. Cunis, T. Leth, L. C. Totu, und A. la Cour-Harbo, „Identification of Thrust, Lift, and Drag for Deep-stall Flight Data of a Fixed-wing Unmanned Aircraft“, in 2018 International Conference on Unmanned Aircraft Systems, Dallas, TX, 2018, S. 531--538. doi: 10.1109/ICUAS.2018.8453340.
    50. 142. R. Geshnizjani, B. Freudenau, und W. Fichter, „Scaled Verification Scenarios for Agile AOCS Testbeds“, gehalten auf der 67. Deutscher Luft- und Raumfahrtkongress, Friedrichshafen, Sep. 2018. doi: 10.25967/480181.
    51. 141. I. Geiss, S. Notter, A. Strohmayer, und W. Fichter, „Optimized Operation Strategies for Serial Hybrid-Electric Aircraft“, Atlanta, Georgia, Juni 2018. doi: 10.2514/6.2018-4230.
    52. 140. S. Notter, P. Schrapel, P. Groß, und W. Fichter, „Estimation of Multiple Thermal Updrafts Using a Particle Filter Approach“, Jan. 2018. doi: 10.2514/6.2018-1854.
    53. 139. C. A. Gerboni, S. Geluardi, W. Fichter, und H. H. Bülthoff, „Model-Following Control and Actuator Limits Analysis to Transform Helicopters into Personal Aerial Vehicles“, Phoenix,  Arizona, Mai 2018.
    54. 138. T. Cunis und E. Baskaya, „Performance of Unmanned Aircrafts in the Event of Loss-of-control“, Melbourne, 2018.
    55. 137. U. Kazenmaier u. a., „Development of a civil light helicopter flight simulator for pilot training“, in Proceedings of the 44th European Rotorcraft Forum 2018 (ERF), 2018, S. 1197–1205.
    56. 136. J. Stephan und W. Fichter, „Gain-Scheduled Multivariable Flight Control under Uncertain Trim Conditions“, Kissimmee, Florida, Jan. 2018. doi: 10.2514/6.2018-1130.
    57. 135. T. Cunis, L. Burlion, und J.-P. Condomines, „Piece-wise identification and analysis of the aerodynamic coefficients, trim conditions, and safe sets of the generic transport model“, 2018. doi: 10.2514/6.2018-1114.
    58. 134. T. Cunis, J.-P. Condomines, und L. Burlion, „Full-envelope, six-degrees-of-freedom trim analysis of unmanned aerial systems based on piece-wise polynomial aerodynamic coefficients“, in 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems, 2017, S. 108--113. doi: 10.1109/RED-UAS.2017.8101652.
    59. 133. C. A. Gerboni, S. Geluardi, J. Venrooij, A. Joos, W. Fichter, und H. H. Buelthoff, „Development of model-following control laws for helicopters to achieve personal aerial vehicle handling qualities“, Grapevine, Texas, Jan. 2017. doi: 10.2514/6.2017-1312.
    60. 132. A. Kornienko, P. Dhole, R. Geshnizjani, P. Jamparueang, und W. Fichter, „Determing Spacecraft Moment of Inertia using In-Orbit Data“, Salzburg, Austria, Mai 2017.
    61. 131. C. Gerboni, S. Geluardi, W. Fichter, und H. Bülthoff, „Investigation and Evaluation of Control Design Requirements for future Personal Aerial Vehicles“, Fort Worth, Texas, Mai 2017.
    62. 130. T. Cunis, L. Burlion, und J.-P. Condomines, „Non-linear Analysis and Control Proposal for In-flight Loss-of-control“, in Preprints of the 20th IFAC World Congress, Toulouse, 2017, S. 10681--10685.
    63. 129. A. Kornienko u. a., „Experimental Verification of Attitude Control System for Agile Spacecraft“, gehalten auf der 20th IFAC Symposion on Automatic Control in Aerospace, Sherbrooke, Canada, Aug. 2016.
    64. 128. L. Schmitt und W. Fichter, „Smooth Singularity Free Solution to the Three-Dimensional Bearings-Only Tracking Problem“, in Proceedings of the 2016 AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, Jan. 2016, S. 1858. doi: 10.2514/6.2016-1858.
    65. 127. R. Geshnizjani, A. Kornienko, und W. Fichter, „Angular Momentum Based Steering Approach for Control Moment Gyroscopes“, Sherbrooke, Canada, Aug. 2016. doi: 10.1016/j.ifacol.2016.09.025.
    66. 126. M. Gros und W. Fichter, „G3-Continuous Trajectory Design For Fixed-Wing Aircraft Based On 6-DoF Kinematics“, San Diego, California, USA, Jan. 2016. doi: 10.2514/6.2016-1873.
    67. 125. S. Notter, A. Heckmann, A. Mcfadyen, und F. Gonzalez, „Modelling, Simulation and Flight Test of a Model Predictive Controlled Multirotor with Heavy Slung Load“, in Proceedings of the 20th IFAC Symposium on Automatic Control in Aerospace 2016, Sherbrooke, Canada, 2016, Bd. 49, Nr. 17, S. 182–187. doi: 10.1016/j.ifacol.2016.09.032.
    68. 124. T. Rath, T. Richter, A. Steinwandel, und W. Fichter, „Emulation of Whirl Flutter on a Stable Helicopter Using Trailing Edge Flaps“, West Palm Beach, Florida, USA, Mai 2016.
    69. 123. T. Cunis, M. Karásek, und G. C. H. E. de Croon, „Precision Position Control of the DelFly II Flapping-wing Micro Air Vehicle in a Wind-tunnel“, Beijing, 2016.
    70. 122. C. A. Gerboni, A. Joos, F. M. Nieuwenhuizen, W. Fichter, und H. Buelthoff, „Control Augmentation Strategies for Helicopters used as Personal Aerial Vehicles“, San Diego, Jan. 2016. doi: 10.2514/6.2016-2137.
    71. 121. M. Zürn, K. Morton, A. Heckmann, A. McFadyen, S. Notter, und F. Gonzalez, „MPC controlled multirotor with suspended slung Load: System architecture and visual load detection“, in 2016 IEEE Aerospace Conference, 2016, S. 1–11. doi: 10.1109/AERO.2016.7500543.
    72. 120. J. Stephan und W. Fichter, „Fast Generation of Landing Paths for Fixed-Wing Aircraft with Thrust Failure“, San Diego, California, USA, Jan. 2016. doi: 10.2514/6.2016-1874.
    73. 119. F. King, A. Steinwandel, und W. Fichter, „Application Issues for In-Flight Tracking Control Using Trailing Edge Flaps“, West Palm Beach, Florida, USA, 2016.
    74. 118. D. Sanz, A. Ahmad, und P. Lima, „Onboard robust person detection and tracking for domestic service robots“, in Robot 2015: Second Iberian Robotics Conference, Cham, Switzerland, 2015, S. 547–559. doi: 10.1007/978-3-319-27149-1_42.
    75. 117. M. Frangenberg, J. Stephan, und W. Fichter, „Fast Actuator Fault Detection and Reconfiguration for Multicopters“, Kissimmee, Florida, Jan. 2015.
    76. 116. M. Odelga, P. Stegagno, H. Bülthoff, und A. Ahmad, „A Setup for multi-UAV hardware-in-the-loop simulations“, 2015, S. 204–210. doi: 10.1109/RED-UAS.2015.7441008.
    77. 115. A. Steinwandel und W. Fichter, „Effects of 2/rev Trailing Edge Flap Input on Helicopter Vibrations for Concurrent Vibration and Noise Reduction“, Virginia  Beach,Virginia, Mai 2015.
    78. 114. D. Bamber u. a., „Absolute Attitude Determination System for a Spherical Air Bearing Testbed“, gehalten auf der 66th International Astronautical Congress, Jerusalem, Okt. 2015.
    79. 113. J. Grzymisch, W. Fichter, W. D. Losa, und M. Casasco, „Bearings-Only Rendezvous with Enhanced Performance“, in Selected Papers of the Third CEAS Specialist Conference on Guidance, Navigation and Control, Toulouse, 2015, S. 571–590.
    80. 112. R. Kueke u. a., „Fly-by-Wire for CS23 Aircraft - Core Technology for General Aviation and RPAS“, London, Okt. 2015.
    81. 111. A. Ahmad und P. Lima, „Dataset Suite for Benchmarking Perception in Robotics“, 2015.
    82. 110. R. Ventura und A. Ahmad, „Towards Optimal Robot Navigation in Urban Homes“, in RoboCup 2014: Robot World Cup XVIII, Cham, Switzerland, 2015, S. 318–331. doi: 10.1007/978-3-319-18615-3_26.
    83. 109. T. Richter, T. Rath, O. Oberinger, und W. Fichter, „Investigation of Whirl Flutter Stabilization using Active Trailing Edge Flaps“, Virginia  Beach,Virginia, 2015.
    84. 108. F. A. King, A. Steinwandel, und W. Fichter, „Performance Characteristics of Symmetrized In-Flight Tracking Control“, Montreal, Quebec,Canad, Mai 2014.
    85. 107. T. Souanef und W. Fichter, „Adaptive Altitude Hold of a Small Fixed Wing UAV“, in Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace 2013, Würzburg, Germany, Sep. 2013, Bd. 19.
    86. 106. A. Troppan, E. Guerreiro, F. Celiberti, G. Santos, A. Ahmad, und P. Lima, „Unknown-color spherical object detection and tracking“, Apr. 2013, S. 1–4. doi: 10.1109/Robotica.2013.6623533.
    87. 105. A. Ahmad, G. Tipaldi, P. Lima, und W. Burgard, „Cooperative Robot Localization and Target Tracking based on Least Squares Minimization“, Mai 2013, S. 5696–5701. doi: 10.1109/ICRA.2013.6631396.
    88. 104. A. Ahmad, T. Nascimento, A. Conceicao, A. Moreira, und P. Lima, „Perception-driven multi-robot formation control“, Mai 2013, S. 1851–1856. doi: 10.1109/ICRA.2013.6630821.
    89. 103. A. Ahmad und P. Lima, „Multi-Robot Cooperative Object Tracking Based on Particle Filters“, in Robotics and Autonomous Systems, Okt. 2013, Bd. 61, Nr. 10, S. 1084--1093. doi: 10.1016/j.robot.2012.12.008.
    90. 102. M. Trittler, T. Rothermel, und W. Fichter, „Visual Servoing Based Landing Approach Controller for Fixed-Wing MAVs“, in Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace 2013, Würzburg, Germany, Feb. 2013, Bd. 19, S. September.
    91. 101. F. Weimer, M. Frangenberg, und W. Fichter, „Pipelined Particle Filter with Non-Observability Measure for On-Board Navigation with MAVs“, Boston, Aug. 2013. doi: 10.2514/6.2013-5247.
    92. 100. M. Casasco u. a., „Pointing Error Budgeting for High Pointing Accuracy Mission using the Pointing Error Engineering Tool“, Boston, Aug. 2013. doi: 10.2514/6.2013-5251.
    93. 99. M. Gros, A. Schoettl, und W. Fichter, „Spline and OBB-based Path-Planning for Small UAVs with the Finite Receding-Horizon Incremental-Sampling Tree Algorithm“, Boston, Aug. 2013. doi: 10.2514/6.2013-4788.
    94. 98. H. Vogel, W. Fichter, R. Choe, E. Xargay, und N. Hovakimyan, „Magnetic Momentum Control of a Satellite Augmented with an L1 Adaptive Controller“, Boston, Massachusetts, USA, Aug. 2013. doi: 10.2514/6.2013-5092.
    95. 97. J. Grzymisch, W. Fehse, W. Fichter, M. Casasco, und D. Losa, „On the Issues and Requirements of Bearings-Only Guidance and Navigation for In-Orbit Rendezvous“, in Proceedings of the 64 International Astronautical Congress, Beijing, China, 2013, Bd. 64. doi: 10.1007/978-3-319-17518-8_33.
    96. 96. M. Trittler, W. Fichter, und A. Schöttl, „Return Strategies for Fixed-Wing MAVs after Loss of GPS“, Würzburg, Germany, Sep. 2013.
    97. 95. T. Souanef, F. Pinchetti, und W. Fichter, „L1 Adaptive Control for Systems with Matched Stochastic Disturbance“, in Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference on Guidance, Navigation & Control, Delft University of Technology, Delft, 2013, S. 297–313.
    98. 94. J. Grzymisch, W. Fichter, M. Casasco, und D. Losa, „A Spherical Coordinate Parameterization for an In-Orbit Bearings-Only Navigation Filter“, in Proceedings of the Advances in Aerospace Guidance, Navigation and Control Conference, 2013, S. 215–231.
    99. 93. A. Joos, P. Heritier, C. Huber, und W. Fichter, „Method for parallel FPGA implementation of nonlinear model predictive control“, Bangalore, India, Feb. 2012.
    100. 92. F. A. King, J.-B. Maurice, W. Fichter, O. Dieterich, und P. Konstanzer, „In-Flight Tracking Control for Helicopters using Active Trailing Edge Flaps“, Minneapolis, Minnesota, USA, 2012.
    101. 91. F. Weimer, T. Rothermel, und W. Fichter, „Adaptive actuator fault detection and identification for UAV applications“, Bangalore, India, Feb. 2012. doi: 10.3182/20120213-3-IN-4034.00015.
    102. 90. S. Weikert, A. Wiegand, W. Fichter, und R. Saage, „Coupled Mission and GNC Analysis for Space Robotic Missions”“, in International Astronautical Congress, Naples, Italy, Okt. 2012, Bd. 63.
    103. 89. M. Gros, W. Grimm, A. Schöttl, und W. Fichter, „Finite receding-horizon incremental-sampling tree with application to a fixed-wing UAV“, in Proceedings of the 1st IFAC Workshop on Embedded Guidance, Navigation and Control in Aerospace, Bangalore, India, Feb. 2012, Bd. 1, Nr. 1.
    104. 88. A. Joos, F. Weimer, und W. Fichter, „Path Planning with FPGAs for UAV Applications“, Carlsbad, Czech Republic, Juni 2011.
    105. 87. T. Ott, W. Fichter, S. Bennani, und S. Winkler, „Coherent Precision Pointing Control Design based on Hinf-Closed Loop Shaping“, Karlovy Vary, CZ, Juni 2011.
    106. 86. A. Joos, M. A. Müller, D. Baumgärtner, W. Fichter, und F. Allgöwer, „Nonlinear Predictive Control Based on Time-Domain Simulation for Automatic Landing“, in Proceedings of the AIAA Guidance, Navigation, and Control Conference 2011, Portland, Oregon, USA, Aug. 2011, Bd. 2.
    107. 85. S. Winkler, F. Cirillo, K. Ergenzinger, T. Ott, R. Wilhelm, und E. Zaunick, „High-Precision Attitude Determination and Control of the EUCLID Spacecraft: Challenges and Solutions“, Karlovy Vary, CZ, Juni 2011.
    108. 84. G. M., N. M., S. A., und W. Fichter, „Motion Planning for a Fixed-Wing MAV Incorporating Closed-Loop Dynamics Motion Primitives and Safety Maneuvers“, in Selected Papers of the 1st CEAS Specialist Conference on Guidance, Navigation and Control, Berlin, 2011, S. 247–260. doi: 10.1007/978-3-642-19817-5_20.
    109. 83. A. Joos und W. Fichter, „Parallel Implementation of Constrained Nonlinear Model Predictive Controller for an FPGA-based Onboard Flight Computer“, 2011. doi: 10.1007/978-3-642-19817-5_22.
    110. 82. P. Lima, P. Santos, R. Oliveira, A. Ahmad, und J. Santos, „Cooperative Localization Based on Visually Shared Objects“, in RoboCup 2010: Robot Soccer World Cup XIV, Berlin, Germany, 2011, S. 350–361. doi: 10.1007/978-3-642-20217-9_30.
    111. 81. T. Ott, A. Benoit, P. Van den Braembussche, und W. Fichter, „ESA Pointing Error Engineering Handbook“, Karlovy Vary, CZ, Juni 2011.
    112. 80. M. Trittler, H. Su, W. Fichter, und A. Schoettl, „Intelligent Camera as Subsystem for Vision-Aided On-Board Navigation of MAVs“, Juni 2011.
    113. 79. T. Kopfstedt, M.-O. Restle, und W. Grimm, „Terrain Optimized Nonholonomic Following of Vehicle Tracks“, Lecce, Italy, Sep. 2010.
    114. 78. M. Dìaz-Aguillò u. a., „Modeling LISA Pathfinder for Data Analysis“, Stanford University, CA, USA, Juni 2010.
    115. 77. R. Saage, R. Ross, A. Schleicher, und W. Fichter, „Controller Design Method for Drag-Free Systems with Micro-Propulsion Constraints“, Aug. 2010. doi: 10.2514/6.2010-8200.
    116. 76. R. Saage, A. Schleicher, und W. Fichter, „Method for LFT Calculation with High Order Parametric Systems“, Toronto, Canada, Aug. 2010. doi: 10.2514/6.2010-8200.
    117. 75. M. Fach, K. H. Well, U. Salomon, und F. Weimer, „Camera-Aided Navigation Sensor for Unmanned Blimp with low Trajectory Dynamics“, Toronto, Ontario Canada, Aug. 2010.
    118. 74. A. Joos, A. Häfner, F. Weimer, und W. Fichter, „Quadrocopter Ground Effect Compensation with Sliding Mode Control“, Toronto, Canada, Aug. 2010.
    119. 73. A. Joos und W. Fichter, „Yaw Guidance for Airships under low Airspeed Conditions“, Toronto, Canada, Aug. 2010.
    120. 72. A. Grynagier, S. Vitale, und W. Fichter, „The Data Analysis for the LISA Pathfinder Drift Mode“, Stanford University, CA, USA, Juni 2010.
    121. 71. C. Böhm, M. Merk, W. Fichter, und F. Allgöwer, „Spacecraft Rate Damping with Predictive Control using Magnetic Actuators Only“, in Nonlinear Model Predictive Control - Towards New Challenging Applications,  Lecture Notes in Control and Information Sciences, 2009, S. 511–520.
    122. 70. F. Saupe, J.-B. Maurice, F. King, und W. Fichter, „Robustness Analysis of Linear Time Periodic Systems using Harmonic Transfer Function“, Chicago, USA, Aug. 2009.
    123. 69. A. Ahmad, A. Del Bue, und P. Lima, „Background Subtraction Based on Rank Constraint for Point  Trajectories“, Okt. 2009, S. 1–3.
    124. 68. J.-B. Maurice, F. King, W. Fichter, O. Dieterich, und P. Konstanzer, „Floquet Convergence Analysis for Periodic Active Rotor Systems Equipped with Trailing Edge Flaps“, Hamburg, Germany, Sep. 2009.
    125. 67. A. Schleicher, R. Saage, M. Hirth, N. Brandt, und W. Fichter, „Drag-Free Control Design for Misaligned Cubic Test Masses“, Ireland, Juni 2008.
    126. 66. N. Brandt und W. Fichter, „Results and Consequences for the LISA Pathfinder Inertial Sensor FEM Analysis“, Barcelona, Spain, Juni 2008.
    127. 65. T. Ziegler, W. Fichter, M. Schulte, und S. Vitale, „Principles, Operations, and Expected Performance of the LISA Pathfinder Charge Management System“, Barcelona, Spain, Juni 2008.
    128. 64. M. Trittler, W. Fichter, R. Voit-Nitschmann, R. Schmoldt, und K. Kittmann, „Preliminary System Identification of the Blended Wing Body Flight Demonstrator VELA2 from Flight Data“, Honolulu, USA, Aug. 2008.
    129. 63. M. Hirth, W. Fichter, N. Brandt, A. Schleicher, D. Gerardi, und G. Wanner, „Optical Metrology Alignment and Impact on the Measurement Performance of the LISA Technology Package“, Barcelona, Spain, Juni 2008.
    130. 62. A. Ahmad und N. Dhang, „Probabilistic Roadmap Method and Real Time Gait Changing Technique Implementation for Travel Time Optimization on a Designed Six-legged Robot“, Okt. 2008, S. 1–5.
    131. 61. F. Montemurro, W. Fichter, und M. Schlotterer, „Sliding Mode Technique Applied to Test Mass Suspension Control“, Toulouse, France, Juni 2007.
    132. 60. T. Ziegler und W. Fichter, „Test Mass Stiffness Estimation for the LISA Pathfinder Drag-Free System“, Hilton Head, South Carolina, USA, Aug. 2007.
    133. 59. T. Ziegler, M. Göbel, A. Schleicher, und W. Fichter, „Calibration of the Micro-Newton Propulsion System of the LISA Pathfinder Drag-Free Satellite“, in CEAS Conference, Berlin, Germany, Sep. 2007, Bd. 1.
    134. 58. W. Fichter, A. Schleicher, S. Bennani, und S. Wu, „Closed Loop Performance and Limitations of the LISA Pathfinder Drag-Free Control System“, Hilton Head, South Carolina, USA, Aug. 2007. doi: 10.2514/6.2007-6732.
    135. 57. K. H. Well, „Aircraft Control Laws for Envelope Protection“, Keystone, Colorado, Aug. 2006.
    136. 56. A. Mayanna, W. Grimm, und K. H. Well, „Adaptive Guidance for Terminal Area Energy Management (TAEM) of Reentry Vehicles“, Keystone, Colorado, Aug. 2006.
    137. 55. D. Y. Reber und W. Ayadi, „Decoupling of an H-Infinity Controller in Observer Form for Helicopter Vibration Reduction“, in International Basic Research Conference on Rotorcraft Technology, Nanjing, China, Nov. 2005, Bd. 2.
    138. 54. W. Ayadi und D. Y. Reber, „Helicopter Vibration Reduction Using Digitally Redesigned H-Infinity Controller in Observer Form“, in International Basic Research Conference on Rotorcraft Technology, Nanjing, China, Nov. 2005, Bd. 2.
    139. 53. S. Erb, „Optimization of a GTO-GEO Low Thrust Satellite Transfer under Industrial Considerations“, Stockholm, Sweden, 2005.
    140. 52. E. M. Wallner und K. H. Well, „Nonlinear Adaptive Flight Control for the X-38 Vehicle“, in Proceedings of the 18th International Symposium on Space Flight Dynamics (ESA SP-548), Munich, Germany, Okt. 2004, S. 353.
    141. 51. A. Kornienko und K. Well, „Estimation of Longitudinal Motion of a Remotely Controlled Airship“, Austin, Texas, USA, Aug. 2003.
    142. 50. E. M. Wallner und K. H. Well, „TETRA Technologien für zukünftige Raumtransportsysteme Anpassung der Lageregelung der X-38 an eine neue Version der Aerodynamik“, 2003.
    143. 49. W. Grimm u. a., „Unified Guidance and Control for Planetary Entry“, in International Symposium on Atmospheric Reentry Vehicles and Systems, Arcachon, France, März 2003, Bd. 3.
    144. 48. E. Wallner und Klaus. H. Well, „Direct Adaptive Control of Aerospace Vehicles Using CMAC Neural Networks“, Stuttgart, Germany, 2002.
    145. 47. M. Gräßlin, E. Wallner, J. Burkhardt, U. Schoettle, und K. H. Well, „Adaptive Guidance and Control Algorithms Applied to the X-38 Reentry Mission“, Housten, Texas, USA, 2002.
    146. 46. T. Mannchen, D. G. Bates, und I. Postlethwaite, „Worst-Case Uncertain Parameter Combinations for Flight Control Systems Analysis“, in Proceedings of the IFAC World Congress, Barcelona, Spain, Juli 2002, Bd. 15, Nr. 1210.
    147. 45. E. Wallner u. a., „Development of Guidance and Control Algorithms for the X-38 Return Vehicle“, Stuttgart, Germany, 2002.
    148. 44. E. Wallner und Klaus. H. Well, „Attitude Control of a Reentry Vehicle with Internal Dynamics“, Monterey, CA, USA, 2002.
    149. 43. T. Mannchen und Klaus. H. Well, „Influence of the Number of Rotor Blades on Helicopter Active Vibration Reduction Potential“, in Proceedings of the European Rotorcraft Forum, Bristol, UK, Sep. 2002, Bd. 28, Nr. 81.
    150. 42. T. Hablowetz, T. Mannchen, und Klaus. H. Well, „Advanced Helicopter Flight Simulation with Controller in the Loop“, in Proceedings of the European Rotorcraft Forum, Netherlands Congress Centre, Hague, Netherlands, Sep. 2001, Bd. 26, Nr. 25.
    151. 41. E. Wallner und Klaus. H. Well, „Nonlinear Flight Control Design for the X-38 Using CMAC Neural Networks“, Montreal, Canada, Aug. 2001.
    152. 40. P. Teufel und Klaus. H. Well, „Multidimensional Gust Simulation and Load Alleviation of a Flexible Aicraft“, Madrid, Spain, Juni 2001.
    153. 39. R. A. Schubert und K. H. Well, „Flight Mechanical Modelling of an ‚„Air Train“‘ using Methods and Formalisms of Multibody Systems“, in Lighter-Than-Air, Akron, Ohio, USA, 2001, Bd. 14.
    154. 38. T. Mannchen und Klaus. H. Well, „Helicopter Vibration Reduction using Periodic Robust Control“, in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Montreal, Quebec, Canada, Aug. 2001, Bd. AIAA-2001-4034.
    155. 37. P. F. Gath und K. H. Well, „Trajectory Optimization Using a Combination of Direct Multiple Shooting and Collocation“, in AIAA Guidance, Navigation, and Control Conference, 2001, Bd. AIAA-2001-4047.
    156. 36. D. Fischer, T. Zöbelein, und A. Roenneke, „Flugführung und Flugregelung des Deorbitmanövers von X-38/CRV“, 2001.
    157. 35. P. F. Gath, Klaus. H. Well, und K. Mehlem, „Automatic Initial Guess Generation for Ariane 5 Dual Payload Ascent Trajectory Optimization“, in AIAA Guidance, Navigation, and Control Conference, Denver, CO, USA, Aug. 2000, Bd. AIAA 2000-4589.
    158. 34. K. H. Well, G. Ortega, K. Mehlem, M. Steinkopf, J. Mulder, und A. J. J. van der Boom, „ESTEC Guidance, Navigation, and Control activities for the Crew Return Vehicle (CRV)“, Noordwijk, Netherlands, Okt. 2000.
    159. 33. T. Hablowetz, „Advanced Helicopter Flight and Aeroelastic Simulation based on General Purpose Multibody Code“, in AIAA Modeling and Simulation Technologies Conference, Denver, CO, USA, Aug. 2000, Bd. AIAA 2000-4299.
    160. 32. P. Teufel, M. Hanel, und K. H. Well, „Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input“, Ottawa Canada, Okt. 1999.
    161. 31. H. Klotz, M. Markus, W. Grimm, und S. E. Strandmoe, „Guidance and Control for Autonomous Reentry and Precision Landing of a small Capsule“, in ESA International Conference on Spacecraft Guidance, Navigation, and Control, Noordwijk, Netherlands, 1999, Bd. 4.
    162. 30. P. F. Gath und A. J. Calise, „Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs“, in AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, USA, Aug. 1999, Bd. AIAA-99-4308.
    163. 29. H. Klotz, J. Starke, B. Frapard, C. Champetier, W. Grimm, und S. E. Strandmoe, „Guidance, Navigation, and Control for Autonomous Reentry and Precision Landing of future small Capsules“, Arachon, France, 1999.
    164. 28. K. H. Well, „ARIANE V Ascent Trajectory Optimization with a First-Stage Splash-Down Constraint“, in IFAC Workshop, Juni 1998, Bd. 8.
    165. 27. G. Weirich und W. Grimm, „A Classical Approach Towards the Ascent Control of a Hypersonic Vehicle“, in Workshop des SFB 255: Optimalsteuerungsprobleme von Hyperschall-Flugsystemen, Tagungsband, University Greifswald, Germany, Okt. 1998, S. 51–62.
    166. 26. P. Teufel, M. Hanel, und K. H. Well, „Integrated Flight and Aeroelastic Control of a Flexible Transport Aircraft“, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 1998, Bd. AIAA-98-4297.
    167. 25. W. Grimm und Klaus. H. Well, „Intercept Maneuvers with Reduced Detection Probability“, UK, März 1997.
    168. 24. M. Paus und Klaus. H. Well, „Optimal Ascent Guidance for a Hypersonic Vehicle“, in AIAA Guidance, Navigation and Control Conference, San Diego, CA, USA, Juni 1996, Bd. AIAA 96-3901, S. 9.
    169. 23. A. Figgen, A. J. Roenneke, und Klaus. H. Well, „Investigations of Guidance and Control of a Semi-Ballistic Reentry Vehicle“, in Space Course, Universität Stuttgart, IFR, Stuttgart, Germany, 1995, Bd. 3, S. 209–229.
    170. 22. M. Paus, W. Grimm, und Klaus. H. Well, „Real-Time Optimization for the Guidance of Dynamic Systems“, in IFAC Workshop on Control Applications of Optimization, Haifa, Israel, Dez. 1995, Bd. 10.
    171. 21. B. G. Kämpf und Klaus. H. Well, „Attitude Control System for a Remotely-Controlled Airship“, in AIAA Lighter-Than-Air Systems Technology Conference, Clearwater, Fl, USA, Mai 1995, Bd. 11.
    172. 20. A. Roenneke, K. Schütz, und Klaus. H. Well, „Trajectory Optimization Using 6-DOF Vehicle Models“, in IFAC Workshop on Control Applications of Optimization, Haifa, Israel, 1995, Bd. 10.
    173. 19. A. J. Roenneke und K. H. Well, „Nonlinear Flight Control for a High-Lift Reentry Vehicle“, in AIAA Guidance, Navigation, and Control Conference, 1995, Bd. AIAA 95-3370-CP, S. 1798–1805.
    174. 18. C. Jänsch und W. K. H., „Optimal Multi-Criteria Aeroassisted Orbital Transfer Trajectories“, in IFACS Symposium on Automatic Control in Aerospace, Sep. 1994, Bd. 13.
    175. 17. W. Grimm, „Optimal Flight Paths with Constrained Dynamic Pressure“, in Optimal Control - Calculus of Variations, Optimal Control Theory, and Numerical Methods, Basel, Switzerland, 1993, Bd. 111.
    176. 16. W. Grimm, „On Ascent Guidance of a Hypersonic Vehicle“, in IFAC-Symposium on Automatic Control in Aerospace Control, Ottobrunn, Germany, Sep. 1993, Bd. 12.
    177. 15. W. Buhl, K. Ebert, H. Herbst, K. Schnepper, und Klaus. H. Well, „Branched Trajectory Optimization for a Two-Stage to Orbit Vehicle“, Seattle, USA, 1993.
    178. 14. M. Paus, „A General Approach to Optimal Real-Time Guidance of Dynamic Systems Based on Nonlinear Programming“, in AIAA Guidance, Navigation, and Control Conference, 1992, Nr. 92–4378.
    179. 13. E. M. Cliff, K. H. Well, und K. Schnepper, „Flight-Test Guidance for Airbreathing Hypersonic Vehicles“, Hilton Head, South Carolina, USA, Jan. 1992. doi: 10.2514/6.1992-4301.
    180. 12. A. J. Roenneke und Klaus. H. Well, „Reentry Control of a Low-Lift Maneuverable Spacecraft“, in AIAA Guidance, Navigation, and Control Conference, Hilton Head, South Carolina, USA, 1992, Bd. AIAA 92-4455-CP, S. 641–652.
    181. 11. W. Grimm, C. Jänsch, A. Markl, K. Schnepper, und K. H. Well, „Guidance of Aerospace Vehicles“, in Trajectory Optimization and Guidance of Aerospace Vehicles, Oberpfaffenhofen, Germany, 1991, Nr. DR 4.04 of the Carl-Cranz-Gesellschaft.
    182. 10. W. Grimm und K. H. Well, „Optimal Guidance Anticipating Missile Performance“, in AGARD-Symposium of the Guidance and Control Panel on Air Vehicle Mission Co, Amsterdam, Netherlands, Okt. 1991, Bd. 53.
  5. Promotionen

    1. 9. T. Cunis, „Modeling, Analysis, and Control for Upset Recovery: From system theory to unmanned aircraft flight“, Doctoral thesis, ISAE-Supaéro, Université de Toulouse, Toulouse, 2019. [Online]. Verfügbar unter: https://tel.archives-ouvertes.fr/tel-02555908
  6. Forschungsberichte

    1. 8. A. Ahmad u. a., „RoCKIn@Work in a Nutshell“, RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, FP7-ICT-601012 Revision 1.2, März 2014.
    2. 7. A. Ahmad u. a., „RoCKIn@Home in a Nutshell“, RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, FP7-ICT-601012 Revision 0.8, März 2014.
    3. 6. J. Messias, A. Ahmad, J. Reis, M. Serafim, und P. Lima, „SocRob-MSL 2013 Team Description Paper for Middle Sized League“, 17th Annual RoboCup International Symposium 2013, Juli 2013.
    4. 5. A. Ahmad u. a., „D2.1.1 RoCKIn@Home - A Competition for Domestic Service Robots  Competition Design, Rule Book, and Scenario Construction“, RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, FP7-ICT-601012 Revision 0.7, Sep. 2013.
    5. 4. A. Ahmad u. a., „D1.1 Specification of General Features of Scenarios and Robots for Benchmarking Through Competitions“, RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, FP7-ICT-601012 Revision 1.0, Juli 2013.
    6. 3. A. Ahmad u. a., „D2.1.4 RoCKIn@Work - Innovation in Mobile Industrial Manipulation Competition Design, Rule Book, and Scenario Construction“, RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, FP7-ICT-601012 Revision 0.7, Sep. 2013.
    7. 2. J. Messias, A. Ahmad, J. Reis, J. Sousa, und P. Lima, „ISocRob-MSL 2011 Team Description Paper for Middle Sized League“, 15th Annual RoboCup International Symposium 2011, Juli 2011.
    8. 1. P. Lima, J. Santos, J. Estilita, M. Barbosa, A. Ahmad, und J. Carreira, „ISocRob-MSL 2009 Team Description Paper for Middle Sized League“, 13th Annual RoboCup International Symposium 2009, Juli 2009.
Zum Seitenanfang