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Optimization is not a Singular Event

Figure: Interplanetary maneuver.
(Source: NASA)

Figure: Planetary maneuver.
(Source: Google Maps)
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Optimization in (Feedback) Loops
I dynamical system (MPC)
I central unit (distributed OP)

I hyper-parameter optimization
I any other upper-level OP

pk+1 ∈ Ψ(pk , . . .)

µ(p) = minx∈X f (x, p), x ∈ Ξ(p)

pkxk ∈ S(pk)

I optimal-control problem
I convex / unconstrained OP

I neural network training
I any other lower-level OP
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Examples
I Model predictive control

uk ∈ argmin
u

OCP(u, xk)

xk+1 = f (xk , uk)

I Hyper-parameter training

θk ∈ argmin
θ

LSQ(θ, pk)

pk+1 = pk − ∂ CVA(pk , θk)

I Augmented Lagrangian Method

xk ∈ argmin
x

L%(x, yk)

yk+1 = yk − %f (xk)
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Input-to-state Stability

Question:
I How does a disturbance affect the interconnected dynamics?

Definition
A dynamic system (e.g., xk+1 = φ(xk , v)) is input-to-state stable (ISS) iff

0-GAS: the equilibrium x̄ is globally asymptotically stable for v ≡ 0;
AG: ∃γ ∈ K, ∀x0, ∀v ∈ `∞, lim supN→∞ ‖xN‖ ≤ γ(supk≥0 ‖vk‖).
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Interconnections of ISS Systems

I Let ψ1, ψ2 be ISS with gains γ1, γ2 ∈ K

xk+1 = ψ1(xk , yk)

yk+1 = ψ2(yk , xk)

xkyk

Figure: ISS if γ1 ◦ γ2 ≺ id

xk+1 = ψ1(xk , yk)

yk+1 = ψ2(yk , xk)

xk

Figure: always ISS
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ISS of Optimization Loops

If the optimization algorithm is (locally) ISS, we can prove...

I that an MPC feedback asymptotically stabilizes
with a finite number of iterations [LMNK20]

I that a gradient-based bilevel scheme converges
with inexact lower-level solutions and gradients [CK23],
even without differentiability in the lower level [CK24a]
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ISS of Optimization Algorithms

Algorithms that are (locally) ISS to disturbances:

[HKC13], [CDS20] Newton-like methods for equation systems
[LMNK20] a class of q-linearly convergent algorithms for optimal control

[Son22] gradient descent with Polyak-Łojasiewicz (PL) condition
[CK23] proximal gradient descent with strong convexity or PL

[dOSS23] Newton’s method for gradient systems
[CK24b] Josephy-Newton methods for generalized equations

including SQP and augmented Lagrangian methods

University of Stuttgart
Institute of Flight Mechanics and Controls

Characterizations of Strong Metric Regularity
Torbjørn Cunis

8/
32



Brief Introduction: Variational Analysis
Consider the problem

min
x
ϕ(x) subject to x ∈ C (P)

with ϕ : X → R continuously (Fréchet) differentiable
and C ⊂ X closed and convex.

Let x̄ be a local minimum

I that is, for a neighbourhood U of x̄,

∀x ∈ C ∩ U , ϕ(x)− ϕ(x̄) ≥ 0

I then [Don21]

∀x ∈ C , ∇ϕ(x̄)(x − x̄) ≥ 0 (VI)
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Brief Introduction: Generalized Equations

The necessary conditions (VI) are equivalent to

∇ϕ(x̄) + N (x̄,C) 3 0 (GE)

where N (·,C) : x 7→ Nx ⊂ X∗ is the normal cone mapping.

I
[
∇ϕ+ N (·,C)

]
: X ⇒ X∗ is a set-valued mapping (SVM)

I similarly, Karush–Kuhn–Tucker (KKT) conditions with y ∈ Y ∗

can be written as F : X × Y ∗ ⇒ X∗ × Y

I nonlinear optimization algorithms often solve (GE) in lieu of (P)
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Brief Introduction: Newton Methods
1. Primal problem and its necessary conditions

min
x
ϕ(x) s.t. x ∈ C ∇ϕ(x) + N (x,C) 3 0

2. Approximate at xk ∈ X

min
x

1
2∇

2ϕ(xk)(x − xk , x − xk)

+∇ϕ(xk)(x − xk) s.t. x ∈ C
∇ϕ(xk) +∇2ϕ(xk)(x − xk)

+ N (x,C) 3 0

3. Solve for next iterate

xk+1 ∈
[
∇2ϕ(xk) + N (·,C)

]−1(∇2ϕ(xk)xk −∇ϕ(xk)
)

and repeat.
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Brief Introduction: Regularity of SVMs

Newton methods for optimization:
I solve F(x) 3 0 through iteration xk+1 ∈ Φ(xk)

Idea of (strong or metric) regularity: F and Φ behave ‘nicely’ around x̄

Remark
Notions of regularity include (imply)

1. surjectivity or openness
2. injectivity
3. nonsingular linear operator
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Brief Introduction: Regularity of SVMs
Newton methods for (perturbed) optimization:
I solve F(x, v) 3 0 through iteration xk+1 ∈ Φ(xk , vk)

Idea of (strong or metric) regularity: F and Φ behave ‘nicely’ around x̄

Remark
Notions of regularity include (imply)

1. surjectivity or openness
2. injectivity
3. nonsingular linear operator

and these notions are stable under perturbation v.
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Outline

Optimization algorithms under strong regularity

Strong regularity in nonlinear optimization

Systems-theoretical characterization of strong regularity
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Problem Setup

Consider the nonlinear optimization problem

min
x
ϕ(x) s.t. g(x) = 0 and x ∈ Ω (1)

with ϕ : X → R, g : X → Y , and Ω ⊆ X

Assume that
1. X is Asplund and x̄ ∈ X is local optimal solution
2. ϕ and g are continuously Fréchet differentiable

(a fortiori strictly differentiable) around x̄
3. Ω ⊆ X is nonempty, closed, and convex
4. either Ω or {0} is SNC at x̄ or 0, respectively
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Problem Setup

Consider the nonlinear optimization problem

min
x
ϕ(x) s.t. g(x) = 0 and x ∈ Ω (1)

with ϕ : X → R, g : X → Y , and Ω ⊆ X

I The Karush–Kuhn–Tucker (KKT) necessary conditions for (1) are

F(x, y) =
(
∇ϕ(x) +∇g(x)∗y

g(x)

)
+

[
N (x,Ω)
{0}

]
3 0 (2)

with duals y ∈ Y ∗ and normal cone N (·,Ω) : X ⇒ X∗
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Example
A discrete-time optimal control problem is given as

min
x =

(
ξ1,...,ξN

υ0,...,υN−1

)
N∑

k=0
`(ξk , υk)︸ ︷︷ ︸
=ϕ(x)

s.t.

 ξ1 − ψ(ξ0, υ0)
...

ξN − ψ(ξN−1, υN−1)


︸ ︷︷ ︸

= g(x)

= 0 and x ∈ X × U︸ ︷︷ ︸
=Ω

where X and U are state and input constraint sets (polygonal or hyperboxes)

This problem is a nonlinear program (NLP):
I X and Y are finite-dimensional
I ϕ and g are (usually) twice differentiable
I Ω is given by linear constraints
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Generalized Newton Methods

Solve the KKT generalized equation(
∇ϕ(x) +∇g(x)∗y

g(x)

)
︸ ︷︷ ︸

= f (z)

+

[
N (x,Ω)
{0}

]
︸ ︷︷ ︸

=N(z)

3 0

via the iteration

f (zk) + H (zk)(zk+1 − zk) + N (zk+1) 3 0 (3)

for a suitable operator H (·) and z = (x, y)
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Generalized Newton Methods
Solve the KKT generalized equation(

∇ϕ(x) +∇g(x)∗y
g(x)

)
︸ ︷︷ ︸

= f (z)

+

[
N (x,Ω)
{0}

]
︸ ︷︷ ︸

=N(z)

3 0

via the iteration

f (zk) + H (zk)(zk+1 − zk) + N (zk+1) 3 0 (3)

Remark (Sequential quadratic programming)

H (z) =
(
∇2(ϕ(x) + 〈g(x), y〉) ∇g(x)∗

∇g(x) 0

)
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Generalized Newton Methods
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=N(z)

3 0

via the iteration

f (zk) + H (zk)(zk+1 − zk) + N (zk+1) 3 0 (3)

Remark (Projected gradient)

H (z) =
(
α−1I 0

0 α−1I

)
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Perturbed Newton Methods

Solve the perturbed generalized equation

f (z, v) + N (z) 3 0

via the perturbed generalized Newton iteration

zk+1 ∈ ΦH (zk , vk) ⇐⇒def f (zk , vk) + H (z, vk)(zk+1 − zk) + N (zk+1) 3 0

for a suitable operator H (·)
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Strong Regularity

Definition
F is strongly regular at z̄ for v̄ ∈ F(z̄) iff,
with neighbourhoods U of z̄ and V of v̄,

∀v ∈ V , F−1(v) ∩ U = {s(v)}

and s(·) is Lipschitz continuous around v̄.
Figure: The inverse of z 7→ z2.

Equivalent: [Don21]
1. F is strongly regular at z̄ for v̄,
2. F−1 has Lipschitz continuous, single-valued localization at v̄ for z̄
3. F is linearly open (a fortiori surjective) and locally injective at z̄ for v̄
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ISS of Newton Methods

Let fH (z ′, z, v) = f (z, v) + H (z, v)(z ′ − z);

Theorem ([CK24b])
Suppose that

1. z̄ is a solution of f (·, 0) + N 3 0
2. fH is uniformly Lipschitz continuous (constants γz and γv) at (z̄, z̄, 0)
3. fH (·, z̄, 0) + N is strongly regular (constant κ) at z̄ for 0

and κγz < 1; then the iteration zk+1 ∈ Φ(zk , v)
is locally unique and locally input-to-state stable.
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is locally unique and locally input-to-state stable.

Proof sketch: The update has a locally unique solution s(·) with

‖zk+1 − z̄‖ = ‖s(zk , vk)− s(z̄, 0)‖ ≤ κγz‖zk − z̄‖+ κγv‖vk‖
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Generalized Implicit Function Theorem

Let fH (z ′, p) = f (p) + H (p)(z ′ − p1) with p = (z, v);

Proposition ([Don21])
Suppose that

1. z̄ is a solution of fH (·, p̄) + N 3 0
2. fH is uniformly Lipschitz continuous (constant γp) at (z̄, p̄)
3. fH (·, p̄) + N is strongly regular (constant κ) at z̄ for 0

then

S : p 7→ {z ∈ X × Y ∗ | fH (z, p) + N (z) 3 0}

has a Lipschitz continuous (constant κγp) and single-valued
localization s(·) at p̄ for z̄.
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Strong Regularity in Nonlinear Optimization

The mapping

fH (·, p̄) + N : (x, y) 7→ f (p̄) +
[
Hxx H ∗

yx
Hyx 0

](
x − x̄
y − ȳ

)
+ N (x,Ω)

with Hxx � 0 is strongly regular at z̄ for 0 if and only if

min
x

Hxx(x − x̄, x − x̄) + [∇ϕ(x̄)− δx ](x − x̄)

s.t. g(x̄) + Hyx(x − x̄) = δy and x ∈ Ω

has a unique primal-dual solution (xδ, yδ) for δ = (δx , δy) close to 0 with

‖(xδ1, yδ1)− (xδ2, yδ2)‖ ≤ κ‖δ1 − δ2‖
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Nonlinear Programs revisited

Consider the nonlinear program

min
x
ϕ(x) s.t. g(x) = 0 and x ∈ Ω = Rn

≥0 (4)

with ϕ : X → R, g : X → Y , and Ω ⊆ X

Assume that
1. X and Y are finite-dimensional; and x̄ ∈ X is local optimal solution
2. ϕ and g are twice continuously Fréchet differentiable
3. Ω = Rn

≥0 is the nonnegative orthant

Note: N (x,Rn
≥0) ⊆ Rn

≤0
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Constraint Qualifications

MFCQ
If the constraint qualification

{∇g(x̄)∗y | y ∈ Y ∗} ∩
[
− N (x̄,Rn

≥0)
]
= {0}

holds and ∇g(x̄) is surjective, then there exists ȳ with F(x̄, ȳ) = 0.

LICQ
If the active constraints

g0 : x 7→ (xi∈I0 , g(x)), where xi = 0 ⇔ i ∈ I0,

have a surjective ∇g0(x̄), then there exists a unique ȳ with F(x̄, ȳ) = 0.
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Strong Stability in Nonlinear Programs

x̄ ∈ X is a stationary solution if and only if F(x̄, ȳ) = 0 for some ȳ ∈ Y ∗.

Definition ([Koj80])
A stationary solution x̄ is strongly stable if and only if there exists a
neighbourhood U of x̄ and d > 0 such that

min
x
ϕ(x) + 〈∆x + δϕ, x〉 s.t. g(x) = δy and x + δx ∈ Rn

≥0

has a unique stationary solution s(·) ∈ U for ‖(∆, δϕ, δy, δx)‖ ≤ d which is
continuous at 0.
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Strong Stability & Strong Regularity

If F is strongly regular at (x̄, ȳ) for 0, then
I x̄ is a strongly stable stationary solution
I MFCQ holds at x̄ with unique dual ȳ

An optimal solution x̄ is a strongly stable stationary solution if and only if
I MFCQ holds
I the strong second-order sufficient condition is satisfied

(a fortiori, x̄ is a strict local minimum)

If x̄ is a strongly stable stationary solution and LICQ holds, then
I F is strongly regular at (x̄, ȳ) for 0
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Strong Regularity beyond Nonlinear Programs
Consider again

min
x
ϕ(x) s.t. g(x) = 0 and x ∈ Ω (1)

with ϕ : X → R, g : X → Y (continuously differentiable, nonsmooth),
and Ω ⊆ X (nonempty closed convex)

Conjecture (for suitable X and ‖ · ‖)
The KKT system of (1) is strongly regular at (x̄, ȳ) for 0 if and only if

1. MFCQ holds with unique duals under some perturbations,
2. the nonsmooth strong second-order sufficient condition

∀x ∈ Ω ∩ U , ϕ(x) + 〈ȳ, g(x)〉+ %

2
‖g(x)‖2 ≥ ϕ(x̄) + µ

2
‖x − x̄‖2

is satisfied for some %, µ > 0 and neighbourhood U ⊂ X.
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Towards a Systems-theoretical Characterization

Consider the canonically perturbed optimization problem

min
x
ϕ(x)− 〈vx , x〉 s.t. g(x) = vy and x ∈ Ω (5)

with ϕ : X → R, g : X → Y , and Ω ⊆ X for (vx , vy) ∈ X∗ × Y

I The KKT conditions for (5) become

F(x, y) =
(
∇ϕ(x) +∇g(x)∗y

g(x)

)
︸ ︷︷ ︸

= f (z)

+

[
N (x,Ω)
{0}

]
︸ ︷︷ ︸

=N(z)

3
(

vx
vy

)
︸ ︷︷ ︸
= v

(6)

with duals y ∈ y and normal cone N (·,Ω) : X ⇒ X∗
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Necessary Conditions for ISS
Suppose that the generalized Newton’s iteration

zk+1 ∈ ΦH (zk , vk) ⇐⇒ f (zk) + H (zk)(zk+1 − zk)− vk + N (zk) 3 0

is locally input-to-state stable around z̄ ∈ F−1(0), that is,

‖zN − z̄‖ ≤ αN‖z0 − z̄‖+ γ sup
k≥0

‖vk‖

for all z0 ∈ U , zk+1 ∈ ΦH (zk , vk) ∩ U , vk ∈ V , and N ≥ k ≥ 0,
where α ∈ (0, 1) and γ ≥ 0

I Any solution zv ∈ (f + N )−1(v) ∩ U for v ∈ V satisfies

‖zv − z̄‖ ≤ γ‖v‖

I Hence, f + N is strongly subregular at z̄ for 0
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Necessary Conditions for ISS

Suppose that the generalized Newton’s iteration

zk+1 ∈ ΦH (zk , vk) ⇐⇒ f (zk) + H (zk)(zk+1 − zk)− vk + N (zk) 3 0

is locally input-to-state stable around z̄ ∈ F−1(0), that is,

‖zN − z̄‖ ≤ αN‖z0 − z̄‖+ γ sup
k≥0

‖vk‖

I Any fixpoint zv ∈ ΦH (zv, v) ∩ U for v ∈ V satisfies

‖zv − z̄‖ ≤ γ‖v‖

I Hence, f + N is strongly subregular at z̄ for 0
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Sufficient Conditions for Strong Subregularity

Suppose that the generalized Newton’s iteration

zk+1 ∈ ΦH (zk , vk) ⇐⇒ f (zk) + H (zk)(zk+1 − zk)− vk + N (zk) 3 0

is locally input-to-state stable around z̄ ∈ F−1(0), that is,

‖zN − z̄‖ ≤ αN‖z0 − z̄‖+ γ sup
k≥0

‖vk‖

I Any solution zv ∈ (f + N )−1(v) ∩ U for v ∈ V satisfies

‖zv − z̄‖ ≤ γ‖v‖

I Hence, f + N is strongly subregular at z̄ for 0
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Sufficient Conditions for Strong Regularity

Theorem (work in progress)
If the generalized Newton’s iteration

zk+1 ∈ ΦH (zk , vk) ⇐⇒ f (zk) + H (zk)(zk+1 − zk)− vk + N (zk) 3 0

1. has a fix point zv ∈ ΦH (zv, v) ∩ U for all v ∈ V and
2. is locally incrementally ISS around z̄ ∈ F−1(0), that is,

‖z ′N − zN‖ ≤ αN‖z ′0 − z0‖+ γ sup
k≥0

‖v′k − vk‖

for all z(′)0 ∈ U, z(′)k+1 ∈ ΦH (z(′)k , v(′)k ) ∩ U, v(′)k ∈ V , N ≥ k ≥ 0, where
α ∈ (0, 1) and γ ≥ 0,

Then f + N is strongly regular at z̄ for 0.
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Concluding Remarks

Regularity of the KKT conditions

I impacts sensitivity and stability in nonlinear optimization

I relates to stable stationary solutions and second-order sufficiency
conditions in nonlinear programs (NLP) and beyond

I applies to nonlinear optimization problems other than NLPs
e.g., nonconvex semidefinite or sum-of-squares programs
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Beyond Strong Regularity

I Strong regularity implies local incremental ISS and uniqueness under
perturbations

Alternatives:
1. Strong subregularity (implies ISS)
2. Metric regularity (implies existence)

Remark
Strong regularity and metric regularity are equivalent for NLPs.
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Nonlinear Sum-of-squares Optimization

A nonlinear polynomial program is

min
ξ
ϕ(ξ) s.t. g(ξ) = 0 and ξ ∈ Σ[x] (7)

with ϕ : R[x] → R, g : R[x] → R[x], and sum-of-squares cone Σ[x] ⊂ R[x]

I these problems arise in analysis and control synthesis of nonlinear
dynamic systems, e.g.,

min

∫
R
[V (x)− h(x)]2

s.t. s(x) [V (x)− 1]−∇V (x)ψ(x)− ε‖x‖2 ∈ Σ[x]
and V (x)− ε‖x‖2 ∈ Σ[x] and s(x) ∈ Σ[x]
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Nonlinear Sum-of-squares Optimization

A nonlinear polynomial program is

min
ξ
ϕ(ξ) s.t. g(ξ) = 0 and ξ ∈ Σ[x] (7)

with ϕ : R[x] → R, g : R[x] → R[x], and sum-of-squares cone Σ[x] ⊂ R[x]

I generalized Newton’s iteration takes the form of a convex
sum-of-squares problem

I this iteration is asymptotically convergent under strong regularity

University of Stuttgart
Institute of Flight Mechanics and Controls

Characterizations of Strong Metric Regularity
Torbjørn Cunis

33/
32



References I

Giuseppe G. Colabufo, Peter M. Dower, and Iman Shames, Newton’s method:
Sufficient conditions for practical and input-to-state stability ,
IFAC-PapersOnLine 53 (2020), no. 2, 6334–6339.

Torbjørn Cunis and Ilya Kolmanovsky, Input-to-State Stability of a Bilevel
Proximal Gradient Descent Algorithm , IFAC-PapersOnLine 56 (2023), no. 2,
7474–7479.

, Inexactness in Bilevel Nonlinear Optimization: A Gradient-free
Newton’s Method Approach , Symposium on Systems Theory in Data and
Optimization, 5 2024.

, Input-to-State Stability of Newton Methods for Generalized Equations
in Nonlinear Optimization , 2024 IEEE Conference on Decision and Control
(Milano), 3 2024.

University of Stuttgart
Institute of Flight Mechanics and Controls

Characterizations of Strong Metric Regularity
Torbjørn Cunis

34/
32



References II

Asen L. Dontchev, Lectures on Variational Analysis , Applied Mathematical
Sciences, no. 205, Springer, Cham, 2021.

Arthur Castello B. de Oliveira, Milad Siami, and Eduardo D. Sontag,
Dynamics and Perturbations of Overparameterized Linear Neural Networks ,
Proceedings of the IEEE Conference on Decision and Control, Institute of
Electrical and Electronics Engineers Inc., 2023, pp. 7356–7361.

Ammar Hasan, Eric C. Kerrigan, and George A. Constantinides,
Control-theoretic forward error analysis of iterative numerical algorithms ,
IEEE Transactions on Automatic Control 58 (2013), no. 6, 1524–1529.

Masakazu Kojima, Strongly Stable Stationary Solutions in Nonlinear Programs
, Analysis and Computation of Fixed Points (Stephen M. Robinson, ed.),
Academic Press, New York, NY, 1980, pp. 93–138.

University of Stuttgart
Institute of Flight Mechanics and Controls

Characterizations of Strong Metric Regularity
Torbjørn Cunis

35/
32



References III

Dominic Liao-McPherson, Marco M. Nicotra, and Ilya Kolmanovsky,
Time-distributed optimization for real-time model predictive control: Stability,
robustness, and constraint satisfaction , Automatica 117 (2020), no. October,
108973.
Eduardo D. Sontag, Remarks on input to state stability of perturbed gradient
flows, motivated by model-free feedback control learning , Systems and Control
Letters 161 (2022), 105138.

University of Stuttgart
Institute of Flight Mechanics and Controls

Characterizations of Strong Metric Regularity
Torbjørn Cunis

36/
32


	Back matter

