Characterizations of Strong Metric Regularity in Nonlinear Optimization

Torbjørn Cunis

University of Stuttgart Institute of Flight Mechanics and Control

VADOR Guest Lecture, TU Wien May 5, 2025

Optimization is not a Singular Event

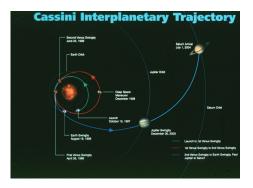


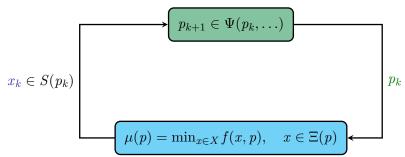
Figure: Interplanetary maneuver. (Source: NASA)

Figure: Planetary maneuver. (Source: Google Maps)

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Optimization in (Feedback) Loops

dynamical system (MPC)
central unit (distributed OP)
hyper-parameter optimization
any other upper-level OP



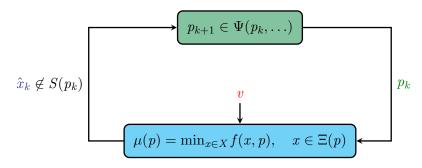
- ▶ optimal-control problem
- ▶ convex / unconstrained OP

- neural network training
- ▶ any other lower-level OP

Optimization in (Feedback) Loops

- ► dynamical system (MPC)
- central unit (distributed OP)

- ► hyper-parameter optimization
- ▶ any other upper-level OP



- ▶ optimal-control problem
- ▶ convex / unconstrained OP

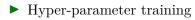
- neural network training
- ▶ any other lower-level OP

Examples

► Model predictive control

$$u_k \in rg \min_u OCP(u, x_k)$$

 $x_{k+1} = f(x_k, u_k)$



$$\theta_k \in \arg\min_{\theta} \mathrm{LSQ}(\theta, p_k)$$
$$p_{k+1} = p_k - \partial \operatorname{CVA}(p_k, \theta_k)$$

▶ Augmented Lagrangian Method

$$x_k \in \arg\min_x L_{\varrho}(x, y_k)$$

 $y_{k+1} = y_k - \varrho f(x_k)$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Input-to-state Stability

Question:

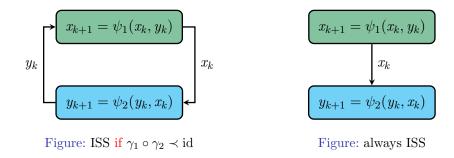
▶ How does a disturbance affect the interconnected dynamics?

Definition

A dynamic system (e.g., $x_{k+1} = \phi(x_k, v)$) is *input-to-state stable* (ISS) iff 0-GAS: the equilibrium \bar{x} is globally asymptotically stable for $v \equiv 0$; AG: $\exists \gamma \in \mathcal{K}, \forall x_0, \forall v \in \ell_{\infty}, \lim \sup_{N \to \infty} \|x_N\| \leq \gamma(\sup_{k \geq 0} \|v_k\|).$

Interconnections of ISS Systems

• Let ψ_1, ψ_2 be ISS with gains $\gamma_1, \gamma_2 \in \mathcal{K}$



ISS of Optimization Loops

If the optimization algorithm is (locally) ISS, we can prove...

 that an MPC feedback asymptotically stabilizes with a finite number of iterations [LMNK20]

▶ that a gradient-based bilevel scheme converges

with inexact lower-level solutions and gradients [CK23], even without differentiability in the lower level [CK24a]

ISS of Optimization Algorithms

Algorithms that are (locally) ISS to disturbances:

[HKC13], [CDS20] Newton-like methods for equation systems
[LMNK20] a class of q-linearly convergent algorithms for optimal control
[Son22] gradient descent with Polyak-Łojasiewicz (PL) condition
[CK23] proximal gradient descent with strong convexity or PL
[dOSS23] Newton's method for gradient systems
[CK24b] Josephy-Newton methods for generalized equations including SQP and augmented Lagrangian methods

Brief Introduction: Variational Analysis Consider the problem

$$\min_{x} \varphi(x) \quad \text{subject to } x \in C \tag{P}$$

with $\varphi : X \to \mathbb{R}$ continuously (Fréchet) differentiable and $C \subset X$ closed and convex.

Let \bar{x} be a *local minimum*

Brief Introduction: Variational Analysis Consider the problem

$$\min_{x} \varphi(x) \quad \text{subject to } x \in C \tag{P}$$

with $\varphi : X \to \mathbb{R}$ continuously (Fréchet) differentiable and $C \subset X$ closed and convex.

Let \bar{x} be a *local minimum*

▶ that is, for a neighbourhood U of \bar{x} ,

 $\forall x \in C \cap U, \quad \varphi(x) - \varphi(\bar{x}) \ge 0$

Brief Introduction: Variational Analysis Consider the problem

$$\min_{x} \varphi(x) \quad \text{subject to } x \in C \tag{P}$$

with $\varphi: X \to \mathbb{R}$ continuously (Fréchet) differentiable and $C \subset X$ closed and convex.

Let \bar{x} be a *local minimum*

▶ that is, for a neighbourhood U of \bar{x} ,

$$\forall x \in C \cap U, \quad \varphi(x) - \varphi(\bar{x}) \ge 0$$

 \blacktriangleright then [Don21]

$$\forall x \in C, \quad \nabla \varphi(\bar{x})(x - \bar{x}) \ge 0$$
 (VI)

FR University of Stuttgart Institute of Flight Mechanics and Controls

Brief Introduction: Generalized Equations

The necessary conditions (VI) are equivalent to

$$\nabla \varphi(\bar{x}) + N(\bar{x}, C) \ni 0 \tag{GE}$$

where $N(\cdot, C): x \mapsto \mathcal{N}_x \subset X^*$ is the normal cone mapping.

Brief Introduction: Generalized Equations

The necessary conditions (VI) are equivalent to

$$\nabla \varphi(\bar{x}) + N(\bar{x}, C) \ni 0 \tag{GE}$$

where $N(\cdot, C) : x \mapsto \mathcal{N}_x \subset X^*$ is the normal cone mapping.

 $\blacktriangleright \ \left[\nabla \varphi + N(\cdot, C)\right] : X \rightrightarrows X^* \text{ is a set-valued mapping (SVM)}$

Brief Introduction: Generalized Equations

The necessary conditions (VI) are equivalent to

$$\nabla \varphi(\bar{x}) + N(\bar{x}, C) \ni 0 \tag{GE}$$

where $N(\cdot, C) : x \mapsto \mathcal{N}_x \subset X^*$ is the normal cone mapping.

- $\blacktriangleright \ \left[\nabla \varphi + N(\cdot, C) \right] : X \rightrightarrows X^* \text{ is a set-valued mapping (SVM)}$
- ▶ similarly, Karush–Kuhn–Tucker (KKT) conditions with $y \in Y^*$ can be written as $F: X \times Y^* \rightrightarrows X^* \times Y$
- ▶ nonlinear optimization algorithms often solve (GE) in lieu of (P)

10/

32

Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

 $\min_{x} \varphi(x) \quad \text{s.t.} \ x \in C \qquad \qquad \nabla \varphi(x) + N(x, C) \ni 0$

Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

$$\min_{x} \varphi(x) \quad \text{s.t. } x \in C \qquad \qquad \nabla \varphi(x) + N(x, C) \ni 0$$

2. Approximate at $x_k \in X$

$$\begin{split} \min_{x} \frac{1}{2} \nabla^{2} \varphi(x_{k})(x - x_{k}, x - x_{k}) & \nabla \varphi(x_{k}) + \nabla^{2} \varphi(x_{k})(x - x_{k}) \\ + \nabla \varphi(x_{k})(x - x_{k}) & \text{s.t. } x \in \mathbf{C} & + N(x, \mathbf{C}) \ni 0 \end{split}$$

Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

$$\min_{x} \varphi(x) \quad \text{s.t. } x \in C \qquad \qquad \nabla \varphi(x) + N(x, C) \ni 0$$

2. Approximate at $x_k \in X$

$$\min_{x} \frac{1}{2} \nabla^{2} \varphi(x_{k})(x - x_{k}, x - x_{k}) \qquad \nabla \varphi(x_{k}) + \nabla^{2} \varphi(x_{k})(x - x_{k}) \\ + \nabla \varphi(x_{k})(x - x_{k}) \quad \text{s.t.} \ x \in C \qquad \qquad + N(x, C) \ni 0$$

3. Solve for next iterate

$$x_{k+1} \in \left[\nabla^2 \varphi(x_k) + N(\cdot, \mathbf{C})\right]^{-1} \left(\nabla^2 \varphi(x_k) x_k - \nabla \varphi(x_k)\right)$$

and repeat.

FR University of Stuttgart Institute of Flight Mechanics and Controls

Brief Introduction: Regularity of SVMs

Newton methods for optimization:

▶ solve $F(x) \ni 0$ through iteration $x_{k+1} \in \Phi(x_k)$

Idea of (strong or metric) regularity: F and Φ behave 'nicely' around \bar{x}

Remark

Notions of *regularity* include (imply)

- 1. surjectivity or openness
- 2. injectivity
- 3. nonsingular linear operator

Brief Introduction: Regularity of SVMs

Newton methods for (perturbed) optimization:

► solve $F(x, v) \ni 0$ through iteration $x_{k+1} \in \Phi(x_k, v_k)$

Idea of (strong or metric) regularity: F and Φ behave 'nicely' around \bar{x}

Remark

Notions of *regularity* include (imply)

- 1. surjectivity or openness
- 2. injectivity
- 3. nonsingular linear operator

and these notions are stable under perturbation $\boldsymbol{v}.$

Outline

Optimization algorithms under strong regularity

Strong regularity in nonlinear optimization

Systems-theoretical characterization of strong regularity

Problem Setup

Consider the nonlinear optimization problem

$$\min_{x} \varphi(x) \quad \text{s.t. } g(x) = 0 \text{ and } x \in \Omega \tag{1}$$

with $\varphi: X \to \mathbb{R}, \ g: X \to Y$, and $\Omega \subseteq X$

Assume that

- 1. X is Asplund and $\bar{x} \in X$ is local optimal solution
- 2. φ and g are continuously Fréchet differentiable (a fortiori strictly differentiable) around \bar{x}
- 3. $\Omega \subseteq X$ is nonempty, closed, and convex
- 4. either Ω or $\{0\}$ is SNC at \bar{x} or 0, respectively

Problem Setup

Consider the nonlinear optimization problem

$$\min_{x} \varphi(x) \quad \text{s.t. } g(x) = 0 \text{ and } x \in \Omega$$
 (1)

with $\varphi: X \to \mathbb{R}, \ g: X \to Y$, and $\Omega \subseteq X$

▶ The Karush-Kuhn-Tucker (KKT) necessary conditions for (1) are

$$F(x,y) = \begin{pmatrix} \nabla\varphi(x) + \nabla g(x)^* y \\ g(x) \end{pmatrix} + \begin{bmatrix} N(x,\Omega) \\ \{0\} \end{bmatrix} \ni 0$$
(2)

with duals $y \in Y^*$ and normal cone $N(\cdot, \Omega) : X \rightrightarrows X^*$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Example

A discrete-time optimal control problem is given as

$$\min_{\substack{x = \begin{pmatrix} \xi_1, \dots, \xi_N \\ v_0, \dots, v_{N-1} \end{pmatrix}}} \underbrace{\sum_{k=0}^N \ell(\xi_k, v_k)}_{= \varphi(x)} \quad \text{s.t.} \underbrace{\begin{pmatrix} \xi_1 - \psi(\xi_0, v_0) \\ \vdots \\ \xi_N - \psi(\xi_{N-1}, v_{N-1}) \end{pmatrix}}_{= g(x)} = 0 \text{ and } x \in \underbrace{\mathcal{X} \times \mathcal{U}}_{= \Omega}$$

where \mathcal{X} and \mathcal{U} are state and input constraint sets (polygonal or hyperboxes)

This problem is a *nonlinear program* (NLP):

- X and Y are finite-dimensional
- φ and g are (usually) twice differentiable
- Ω is given by linear constraints

Solve the KKT generalized equation

$$\underbrace{\begin{pmatrix} \nabla \varphi(x) + \nabla g(x)^* y \\ g(x) \end{pmatrix}}_{=\mathbf{f}(z)} + \underbrace{\begin{bmatrix} N(x, \Omega) \\ \{0\} \\ \end{bmatrix}}_{=\mathbf{N}(z)} \ni 0$$

via the iteration

$$f(z_k) + H(z_k)(z_{k+1} - z_k) + N(z_{k+1}) \ni 0$$
(3)

for a suitable operator $H(\cdot)$ and z = (x, y)

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Solve the KKT generalized equation

$$\underbrace{\begin{pmatrix} \nabla \varphi(x) + \nabla g(x)^* y \\ g(x) \end{pmatrix}}_{=f(z)} + \underbrace{\begin{bmatrix} N(x, \Omega) \\ \{0\} \\ \end{bmatrix}}_{=N(z)} \ni 0$$

via the iteration

$$f(z_k) + H(z_k)(z_{k+1} - z_k) + N(z_{k+1}) \ni 0$$
(3)

Remark (Sequential quadratic programming)

$$H(z) = \begin{pmatrix} \nabla^2(\varphi(x) + \langle g(x), y \rangle) & \nabla g(x)^* \\ \nabla g(x) & 0 \end{pmatrix}$$

FR University of Stuttgart Institute of Flight Mechanics and Controls **Characterizations of Strong Metric Regularity** Torbjørn Cunis $\frac{16}{32}$

Solve the KKT generalized equation

$$\underbrace{\begin{pmatrix} \nabla \varphi(x) + \nabla g(x)^* y \\ g(x) \end{pmatrix}}_{=f(z)} + \underbrace{\begin{bmatrix} N(x, \Omega) \\ \{0\} \\ \end{bmatrix}}_{=N(z)} \ni 0$$

via the iteration

$$f(z_k) + H(z_k)(z_{k+1} - z_k) + N(z_{k+1}) \ni 0$$
(3)

Remark (Sequential linear programming)

$$H(z) = \begin{pmatrix} 0 & \nabla g(x)^* \\ \nabla g(x) & 0 \end{pmatrix}$$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Solve the KKT generalized equation

$$\underbrace{\begin{pmatrix} \nabla \varphi(x) + \nabla g(x)^* y \\ g(x) \end{pmatrix}}_{=f(z)} + \underbrace{\begin{bmatrix} N(x, \Omega) \\ \{0\} \\ \end{bmatrix}}_{=N(z)} \ni 0$$

via the iteration

$$f(z_k) + H(z_k)(z_{k+1} - z_k) + N(z_{k+1}) \ni 0$$
(3)

Remark (Projected gradient)

$$H(z) = \begin{pmatrix} \alpha^{-1} \mathbb{I} & 0\\ 0 & \alpha^{-1} \mathbb{I} \end{pmatrix}$$

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Perturbed Newton Methods

Solve the *perturbed* generalized equation

$$f(z, \mathbf{v}) + N(z) \ni 0$$

via the perturbed generalized Newton iteration

 $z_{k+1} \in \Phi_H(z_k, v_k) \iff_{\text{def}} f(z_k, v_k) + H(z, v_k)(z_{k+1} - z_k) + N(z_{k+1}) \ni 0$ for a suitable operator $H(\cdot)$

Strong Regularity

Definition

F is strongly regular at \overline{z} for $\overline{v} \in F(\overline{z})$ iff, with neighbourhoods U of \overline{z} and V of \overline{v} ,

$$\forall v \in V, \quad F^{-1}(v) \cap U = \{s(v)\}$$

and $s(\cdot)$ is Lipschitz continuous around \bar{v} .

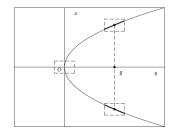


Figure: The inverse of $z \mapsto z^2$.

Equivalent: [Don21]

- 1. F is strongly regular at \bar{z} for \bar{v} ,
- 2. F^{-1} has Lipschitz continuous, single-valued localization at \bar{v} for \bar{z}
- 3. F is linearly open (a fortiori surjective) and locally injective at \bar{z} for \bar{v}

ISS of Newton Methods

Let
$$f_H(z', z, v) = f(z, v) + H(z, v)(z' - z);$$

Theorem ([CK24b])

Suppose that

- 1. \overline{z} is a solution of $f(\cdot, 0) + N \ni 0$
- 2. f_H is uniformly Lipschitz continuous (constants γ_z and γ_v) at $(\bar{z}, \bar{z}, 0)$
- **3.** $f_H(\cdot, \bar{z}, 0) + N$ is strongly regular (constant κ) at \bar{z} for 0

and $\kappa \gamma_z < 1$; then the iteration $z_{k+1} \in \Phi(z_k, v)$ is locally unique and locally input-to-state stable.

ISS of Newton Methods

Let
$$f_H(z', z, v) = f(z, v) + H(z, v)(z' - z);$$

Theorem ([CK24b])

 $Suppose \ that$

1. \overline{z} is a solution of $f(\cdot, 0) + N \ni 0$

2. f_H is uniformly Lipschitz continuous (constants γ_z and γ_v) at $(\bar{z}, \bar{z}, 0)$

3. $f_H(\cdot, \bar{z}, 0) + N$ is strongly regular (constant κ) at \bar{z} for 0

and $\kappa \gamma_z < 1$; then the iteration $z_{k+1} \in \Phi(z_k, v)$

is locally unique and locally input-to-state stable.

Proof sketch: The update has a locally unique solution $s(\cdot)$ with

$$||z_{k+1} - \bar{z}|| = ||s(z_k, v_k) - s(\bar{z}, 0)|| \le \kappa \gamma_z ||z_k - \bar{z}|| + \kappa \gamma_v ||v_k||$$

Generalized Implicit Function Theorem

Let
$$f_H(z', p) = f(p) + H(p)(z' - p_1)$$
 with $p = (z, v);$

Proposition ([Don21])

 $Suppose \ that$

1. \bar{z} is a solution of $f_H(\cdot, \bar{p}) + N \ni 0$

2. f_H is uniformly Lipschitz continuous (constant γ_p) at (\bar{z}, \bar{p})

3. $f_H(\cdot, \bar{p}) + N$ is strongly regular (constant κ) at \bar{z} for 0

then

$$S: p \mapsto \{z \in X \times Y^* \mid f_H(z, p) + N(z) \ni 0\}$$

has a Lipschitz continuous (constant $\kappa \gamma_p$) and single-valued localization $s(\cdot)$ at \bar{p} for \bar{z} .

University of Stuttgart Institute of Flight Mechanics and Controls Characterizations of Strong Metric Regularity $\operatorname{Torbjørn}$ Cunis

Strong Regularity in Nonlinear Optimization

The mapping

$$f_H(\cdot,\bar{p}) + N: (x,y) \mapsto f(\bar{p}) + \begin{bmatrix} H_{xx} & H_{yx}^* \\ H_{yx} & 0 \end{bmatrix} \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix} + N(x,\Omega)$$

with $H_{xx} \succeq 0$ is strongly regular at \overline{z} for 0 if and only if

$$\min_{x} H_{xx}(x - \bar{x}, x - \bar{x}) + [\nabla \varphi(\bar{x}) - \delta_{x}](x - \bar{x})$$

s.t. $g(\bar{x}) + H_{yx}(x - \bar{x}) = \delta_{y}$ and $x \in \Omega$

has a unique primal-dual solution (x_{δ}, y_{δ}) for $\delta = (\delta_x, \delta_y)$ close to 0 with

$$\|(x_{\delta 1}, y_{\delta 1}) - (x_{\delta 2}, y_{\delta 2})\| \le \kappa \|\delta_1 - \delta_2\|$$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Nonlinear Programs revisited

Consider the nonlinear program

$$\min_{x} \varphi(x) \quad \text{s.t. } g(x) = 0 \text{ and } x \in \Omega = \mathbb{R}^n_{\geq 0}$$
(4)

with $\varphi: X \to \mathbb{R}, g: X \to Y$, and $\Omega \subseteq X$

Assume that

- 1. X and Y are finite-dimensional; and $\bar{x} \in X$ is local optimal solution
- 2. φ and g are twice continuously Fréchet differentiable
- 3. $\Omega = \mathbb{R}^n_{>0}$ is the nonnegative orthant

Note: $N(x, \mathbb{R}^n_{\geq 0}) \subseteq \mathbb{R}^n_{\leq 0}$

Constraint Qualifications

MFCQ

If the constraint qualification

$$\{\nabla g(\bar{x})^* y \mid y \in Y^*\} \cap \left[-N(\bar{x}, \mathbb{R}^n_{\geq 0})\right] = \{0\}$$

holds and $\nabla g(\bar{x})$ is surjective, then there exists \bar{y} with $F(\bar{x}, \bar{y}) = 0$.

LICQ

If the active constraints

 $g_0: x \mapsto (x_{i \in I_0}, g(x)), \text{ where } x_i = 0 \Leftrightarrow i \in I_0,$

have a surjective $\nabla g_0(\bar{x})$, then there exists a unique \bar{y} with $F(\bar{x}, \bar{y}) = 0$.

University of Stuttgart Institute of Flight Mechanics and Controls

Strong Stability in Nonlinear Programs

 $\bar{x} \in X$ is a *stationary solution* if and only if $F(\bar{x}, \bar{y}) = 0$ for some $\bar{y} \in Y^*$.

Definition ([Koj80])

A stationary solution \bar{x} is *strongly stable* if and only if there exists a neighbourhood U of \bar{x} and d > 0 such that

$$\min_{x} \varphi(x) + \langle \Delta x + \delta_{\varphi}, x \rangle \quad \text{s.t. } g(x) = \delta_{y} \text{ and } x + \delta_{x} \in \mathbb{R}^{n}_{\geq 0}$$

has a unique stationary solution $s(\cdot) \in U$ for $||(\Delta, \delta_{\varphi}, \delta_y, \delta_x)|| \leq d$ which is continuous at 0.

Strong Stability & Strong Regularity

If F is strongly regular at (\bar{x}, \bar{y}) for 0, then

- \bar{x} is a strongly stable stationary solution
- ▶ MFCQ holds at \bar{x} with unique dual \bar{y}

Strong Stability & Strong Regularity

If F is strongly regular at (\bar{x}, \bar{y}) for 0, then

- \bar{x} is a strongly stable stationary solution
- ▶ MFCQ holds at \bar{x} with unique dual \bar{y}

An *optimal* solution \bar{x} is a strongly stable stationary solution if and only if

- ► MFCQ holds
- the strong second-order sufficient condition is satisfied (a fortiori, \bar{x} is a strict local minimum)

Strong Stability & Strong Regularity

If F is strongly regular at (\bar{x}, \bar{y}) for 0, then

- \bar{x} is a strongly stable stationary solution
- MFCQ holds at \bar{x} with unique dual \bar{y}

An *optimal* solution \bar{x} is a strongly stable stationary solution if and only if

- ► MFCQ holds
- the strong second-order sufficient condition is satisfied (a fortiori, \bar{x} is a strict local minimum)

If \bar{x} is a strongly stable stationary solution and LICQ holds, then

• F is strongly regular at (\bar{x}, \bar{y}) for 0

Strong Regularity beyond Nonlinear Programs Consider again

$$\min_{x} \varphi(x) \quad \text{s.t. } g(x) = 0 \text{ and } x \in \Omega \tag{1}$$

with $\varphi: X \to \mathbb{R}, g: X \to Y$ (continuously differentiable, nonsmooth), and $\Omega \subseteq X$ (nonempty closed convex)

Conjecture (for suitable X and $\|\cdot\|$)

The KKT system of (1) is strongly regular at (\bar{x}, \bar{y}) for 0 if and only if 1. MFCQ holds with unique duals under some perturbations,

2. the nonsmooth strong second-order sufficient condition

$$\forall x \in \Omega \cap U, \quad \varphi(x) + \langle \bar{y}, g(x) \rangle + \frac{\varrho}{2} \|g(x)\|^2 \ge \varphi(\bar{x}) + \frac{\mu}{2} \|x - \bar{x}\|^2$$

is satisfied for some $\varrho, \mu > 0$ and neighbourhood $U \subset X$.

University of Stuttgart Institute of Flight Mechanics and Controls

Towards a Systems-theoretical Characterization

Consider the *canonically perturbed* optimization problem

$$\min_{x} \varphi(x) - \langle v_x, x \rangle \quad \text{s.t. } g(x) = v_y \text{ and } x \in \Omega$$
(5)

with $\varphi: X \to \mathbb{R}, g: X \to Y$, and $\Omega \subseteq X$ for $(v_x, v_y) \in X^* \times Y$

▶ The KKT conditions for (5) become

$$F(x,y) = \underbrace{\begin{pmatrix} \nabla \varphi(x) + \nabla g(x)^* y \\ g(x) \end{pmatrix}}_{=f(z)} + \underbrace{\begin{bmatrix} N(x,\Omega) \\ \{0\} \\ \vdots \\ N(z) \end{bmatrix}}_{=N(z)} \ni \underbrace{\begin{pmatrix} v_x \\ v_y \end{pmatrix}}_{=v}$$
(6)

with duals $y\in y$ and normal cone $N(\cdot,\Omega):X\rightrightarrows X^*$

University of Stuttgart Institute of Flight Mechanics and Controls

Necessary Conditions for ISS

Suppose that the generalized Newton's iteration

$$z_{k+1} \in \Phi_H(z_k, v_k) \iff f(z_k) + H(z_k)(z_{k+1} - z_k) - v_k + N(z_k) \ge 0$$

is locally input-to-state stable around $\bar{z} \in F^{-1}(0)$, that is,

$$\|z_N - \bar{z}\| \le \alpha^N \|z_0 - \bar{z}\| + \gamma \sup_{k \ge 0} \|\boldsymbol{v}_k\|$$

for all $z_0 \in U$, $z_{k+1} \in \Phi_H(z_k, v_k) \cap U$, $v_k \in V$, and $N \ge k \ge 0$, where $\alpha \in (0, 1)$ and $\gamma \ge 0$

Necessary Conditions for ISS

Suppose that the generalized Newton's iteration

$$z_{k+1} \in \Phi_H(z_k, \mathbf{v}_k) \Longleftrightarrow f(z_k) + H(z_k)(z_{k+1} - z_k) - \mathbf{v}_k + N(z_k) \ni 0$$

is locally input-to-state stable around $\bar{z} \in F^{-1}(0)$, that is,

$$\|z_N - \bar{z}\| \le \alpha^N \|z_0 - \bar{z}\| + \gamma \sup_{k \ge 0} \|\boldsymbol{v}_k\|$$

Any fixpoint $z_v \in \Phi_H(z_v, v) \cap U$ for $v \in V$ satisfies

 $\|z_v - \bar{z}\| \le \gamma \|v\|$

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Necessary Conditions for ISS

Suppose that the generalized Newton's iteration

$$z_{k+1} \in \Phi_H(z_k, \mathbf{v}_k) \Longleftrightarrow f(z_k) + H(z_k)(z_{k+1} - z_k) - \mathbf{v}_k + N(z_k) \ge 0$$

is locally input-to-state stable around $\bar{z} \in F^{-1}(0)$, that is,

$$\|z_N - \bar{z}\| \le \alpha^N \|z_0 - \bar{z}\| + \gamma \sup_{k \ge 0} \|\boldsymbol{v}_k\|$$

▶ Any solution $z_v \in (f + N)^{-1}(v) \cap U$ for $v \in V$ satisfies

 $\|z_v - \bar{z}\| \le \gamma \|v\|$

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Sufficient Conditions for Strong Subregularity

Suppose that the generalized Newton's iteration

$$z_{k+1} \in \Phi_H(z_k, \mathbf{v}_k) \Longleftrightarrow f(z_k) + H(z_k)(z_{k+1} - z_k) - \mathbf{v}_k + N(z_k) \ge 0$$

is locally input-to-state stable around $\bar{z} \in F^{-1}(0)$, that is,

$$\|z_N - \bar{z}\| \le \alpha^N \|z_0 - \bar{z}\| + \gamma \sup_{k \ge 0} \|\boldsymbol{v}_k\|$$

▶ Any solution $z_v \in (f + N)^{-1}(v) \cap U$ for $v \in V$ satisfies

 $\|z_v - \bar{z}\| \le \gamma \|v\|$

• Hence, f + N is strongly subregular at \overline{z} for 0

FR University of Stuttgart Institute of Flight Mechanics and Controls

Sufficient Conditions for Strong Regularity

Theorem (work in progress)

If the generalized Newton's iteration

$$z_{k+1} \in \Phi_H(z_k, v_k) \iff f(z_k) + H(z_k)(z_{k+1} - z_k) - v_k + N(z_k) \ge 0$$

- **1**. has a fix point $z_v \in \Phi_H(z_v, v) \cap U$ for all $v \in V$ and
- 2. is locally incrementally ISS around $\bar{z} \in F^{-1}(0)$, that is,

$$||z'_N - z_N|| \le \alpha^N ||z'_0 - z_0|| + \gamma \sup_{k \ge 0} ||v'_k - v_k|$$

for all $z_0^{(\prime)} \in U$, $z_{k+1}^{(\prime)} \in \Phi_H(z_k^{(\prime)}, v_k^{(\prime)}) \cap U$, $v_k^{(\prime)} \in V$, $N \ge k \ge 0$, where $\alpha \in (0,1)$ and $\gamma \ge 0$, Then f + N is strongly regular at \bar{z} for 0.

Q University of Stuttgart Institute of Flight Mechanics and Controls

Concluding Remarks

Regularity of the KKT conditions

- ▶ impacts sensitivity and stability in nonlinear optimization
- relates to stable stationary solutions and second-order sufficiency conditions in nonlinear programs (NLP) and beyond
- applies to nonlinear optimization problems other than NLPs e.g., nonconvex semidefinite or sum-of-squares programs

Beyond Strong Regularity

 Strong regularity implies local incremental ISS and uniqueness under perturbations

Alternatives:

- 1. Strong subregularity (implies ISS)
- 2. Metric regularity (implies existence)

Remark

Strong regularity and metric regularity are equivalent for NLPs.

Acknowledgments

Thank you!

tcunis@ifr.uni-stuttgart.de
 tcunis@umich.edu

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Nonlinear Sum-of-squares Optimization

A nonlinear polynomial program is

$$\min_{\xi} \varphi(\xi) \quad \text{s.t. } g(\xi) = 0 \text{ and } \xi \in \Sigma[x] \tag{7}$$

with $\varphi : \mathbb{R}[x] \to \mathbb{R}, \ g : \mathbb{R}[x] \to \mathbb{R}[x]$, and sum-of-squares cone $\Sigma[x] \subset \mathbb{R}[x]$

▶ these problems arise in analysis and control synthesis of nonlinear dynamic systems, e.g.,

$$\min \int_{\mathcal{R}} [V(x) - h(x)]^2$$

s.t. $s(x) [V(x) - 1] - \nabla V(x)\psi(x) - \varepsilon ||x||^2 \in \Sigma[x]$
and $V(x) - \varepsilon ||x||^2 \in \Sigma[x]$ and $s(x) \in \Sigma[x]$

University of Stuttgart Institute of Flight Mechanics and Controls

Nonlinear Sum-of-squares Optimization

A nonlinear polynomial program is

$$\min_{\xi} \varphi(\xi) \quad \text{s.t. } g(\xi) = 0 \text{ and } \xi \in \Sigma[x] \tag{7}$$

with $\varphi : \mathbb{R}[x] \to \mathbb{R}, \ g : \mathbb{R}[x] \to \mathbb{R}[x]$, and sum-of-squares cone $\Sigma[x] \subset \mathbb{R}[x]$

 generalized Newton's iteration takes the form of a *convex* sum-of-squares problem

▶ this iteration is asymptotically convergent under strong regularity

References I

- Giuseppe G. Colabufo, Peter M. Dower, and Iman Shames, Newton's method: Sufficient conditions for practical and input-to-state stability, IFAC-PapersOnLine **53** (2020), no. 2, 6334–6339.
- Torbjørn Cunis and Ilya Kolmanovsky, *Input-to-State Stability of a Bilevel Proximal Gradient Descent Algorithm*, IFAC-PapersOnLine **56** (2023), no. 2, 7474–7479.
- _____, Inexactness in Bilevel Nonlinear Optimization: A Gradient-free Newton's Method Approach, Symposium on Systems Theory in Data and Optimization, 5 2024.
- , Input-to-State Stability of Newton Methods for Generalized Equations in Nonlinear Optimization, 2024 IEEE Conference on Decision and Control (Milano), 3 2024.

References II

- Asen L. Dontchev, *Lectures on Variational Analysis*, Applied Mathematical Sciences, no. 205, Springer, Cham, 2021.
- Arthur Castello B. de Oliveira, Milad Siami, and Eduardo D. Sontag, *Dynamics and Perturbations of Overparameterized Linear Neural Networks*, Proceedings of the IEEE Conference on Decision and Control, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 7356–7361.
- Ammar Hasan, Eric C. Kerrigan, and George A. Constantinides, *Control-theoretic forward error analysis of iterative numerical algorithms*, IEEE Transactions on Automatic Control **58** (2013), no. 6, 1524–1529.
- Masakazu Kojima, Strongly Stable Stationary Solutions in Nonlinear Programs, , Analysis and Computation of Fixed Points (Stephen M. Robinson, ed.), Academic Press, New York, NY, 1980, pp. 93–138.

References III

- Dominic Liao-McPherson, Marco M. Nicotra, and Ilya Kolmanovsky, *Time-distributed optimization for real-time model predictive control: Stability, robustness, and constraint satisfaction*, Automatica **117** (2020), no. October, 108973.
- Eduardo D. Sontag, *Remarks on input to state stability of perturbed gradient flows, motivated by model-free feedback control learning*, Systems and Control Letters **161** (2022), 105138.