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Optimization is not a Singular Event
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Figure: Interplanetary maneuver.

(Source: NASA)
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Figure: Planetary maneuver.
(Source: Google Maps)
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Optimization in (Feedback) Loops

» dynamical system (MPC) » hyper-parameter optimization
» central unit (distributed OP) » any other upper-level OP
—>[ Pi+1 € U(pg,- ) ]
), € S(pr) Pk

—[ p(p) = mingex f(z,p), =€ E(p) ]

» optimal-control problem » neural network training

» convex / unconstrained OP » any other lower-level OP
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Optimization in (Feedback) Loops

» dynamical system (MPC)
» central unit (distributed OP)

i & S(pr)

» optimal-control problem

» convex / unconstrained OP

—’[ Pi+1 € U(pg,- )

)

)

v

|

—[ e N —

—
—

E(p)

)

)
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» any other upper-level OP
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» neural network training

» any other lower-level OP
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Examples
» Model predictive control

u € arg mgn OCP(u, )
1 = (@, ur)
» Hyper-parameter training
0y € arg mein LSQ(8, pr)
Pr+1 = pr — 0 CVA(py, 0p)
» Augmented Lagrangian Method
T € arg m;n Lo(z, yr)

Yer1 = Yk — of (a1)
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Input-to-state Stability

Question:

» How does a disturbance affect the interconnected dynamics?

A dynamic system (e.g., zx+1 = ¢(ay, v)) is input-to-state stable (ISS) iff
0-GAS: the equilibrium z is globally asymptotically stable for v = 0;
AG: Iy € K, Vg, Yv € Lo, limsupy_, o [|zn|| < v(supgso | vkll)-
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Interconnections of ISS Systems

> Let 91,19 be ISS with gains v1,v2 € K

Yk Ty
Figure: ISS if 1 02 < id Figure: always ISS
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ISS of Optimization Loops

If the optimization algorithm is (locally) ISS, we can prove...

» that an MPC feedback asymptotically stabilizes
with a finite number of iterations [LMNK20]

» that a gradient-based bilevel scheme converges
with inexact lower-level solutions and gradients [CK23],

even without differentiability in the lower level [CK24a]
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ISS of Optimization Algorithms

Algorithms that are (locally) ISS to disturbances:

[HKC13], [CDS20] Newton-like methods for equation systems
[LMNEK20] a class of ¢-linearly convergent algorithms for optimal control
[Son22] gradient descent with Polyak-Lojasiewicz (PL) condition
[CK23] proximal gradient descent with strong convexity or PL
]
]

[d0SS23

CK24b| Josephy-Newton methods for generalized equations
y
including SQP and augmented Lagrangian methods

Newton’s method for gradient systems
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Brief Introduction: Variational Analysis
Consider the problem

min ¢(z) subject to z € C (P)

with ¢ : X — R continuously (Fréchet) differentiable
and C' C X closed and convex.

Let z be a local minimum
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Brief Introduction: Variational Analysis
Consider the problem

min ¢(z) subject to z € C (P)

with ¢ : X — R continuously (Fréchet) differentiable
and C' C X closed and convex.

Let z be a local minimum

» that is, for a neighbourhood U of z,

Vee CNU, ¢(z)—pE) >0
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Brief Introduction: Variational Analysis
Consider the problem

min ¢(z) subject to z € C (P)

with ¢ : X — R continuously (Fréchet) differentiable
and C' C X closed and convex.

Let z be a local minimum

» that is, for a neighbourhood U of z,
Vee CNU, ¢(x)—p(E) >0

» then [Don21]

Vee C, Ve(z)(z—2z)>0 (VI)
'F: University of Stuttgart Characterizations of Strong Metric Regularity 9/
I \ Institute of Flight Mechanics and Controls Torbjgrn Cunis 32



Brief Introduction: Generalized Equations

The necessary conditions (VI) are equivalent to
Vo(z)+ Nz, C) >0 (GE)

where N(-, C) : z — N, C X* is the normal cone mapping.
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Brief Introduction: Generalized Equations
The necessary conditions (VI) are equivalent to
Vo(z)+ Nz, C) >0 (GE)
where N(-, C) : z — N, C X* is the normal cone mapping.

> [Vo+ N(-,C)] : X = X* is a set-valued mapping (SVM)
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Brief Introduction: Generalized Equations

The necessary conditions (VI) are equivalent to
Vo(z)+ Nz, C) >0 (GE)
where N(-, C) : z — N, C X* is the normal cone mapping.

> [Vo+ N(-,C)] : X = X* is a set-valued mapping (SVM)

» similarly, Karush-Kuhn-Tucker (KKT) conditions with y € Y*
can be written as F': X x Y* =2 X* x V

» nonlinear optimization algorithms often solve (GE) in lieu of (P)

'F: University of Stuttgart Characterizations of Strong Metric Regularity 10/
I \ Institute of Flight Mechanics and Controls Torbjgrn Cunis 32



Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

ming(z) st.oze Ve(z) + N(z,C) 30
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Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

mxin o(r) st.zel Vo(z)+ N(z,C) >0

2. Approximate at z; € X

s 12
min 5 Vop(zp)(x — o5, ¢ — T 2 /.
tin 5 V=i (a) (2 — 2k, = — 2) Vo(m) + V(1) (z — 1)
+Vo(z)(z—a) st.zeC + N(z,C)>0
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Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

mxin o(r) st.zel Vo(z)+ N(z,C) >0

2. Approximate at z; € X

min jVe(a)(e = 30 =5) V() + Vi(n) (@ - w)
+Vo(z)(z—a) st.zeC + N(z,C)>0

3. Solve for next iterate

Tpa1 € [Vznp(xk) + N(, C)] ! (VQgD(:L'k)xk — ch(ack))

and repeat.
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Brief Introduction: Regularity of SVMs

Newton methods for optimization:
» solve F(z) 5 0 through iteration xyy; € ®(xy)

Idea of (strong or metric) regularity: F and ® behave ‘nicely’ around z

Remark

Notions of regularity include (imply)
1. surjectivity or openness
2. injectivity

3. nonsingular linear operator
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Brief Introduction: Regularity of SVMs

Newton methods for (perturbed) optimization:
» solve F(z,v) > 0 through iteration zjx41 € ®(zx, v1)

Idea of (strong or metric) regularity: F and ® behave ‘nicely’ around z

Remark

Notions of regularity include (imply)
1. surjectivity or openness
2. injectivity
3. nonsingular linear operator

and these motions are stable under perturbation v.
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Outline

Optimization algorithms under strong regularity
Strong regularity in nonlinear optimization

Systems-theoretical characterization of strong regularity
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Problem Setup

Consider the nonlinear optimization problem

ming(z) s.t. g(z) =0and z € Q (1)

withp: X >R g: X = YV, and Q C X

Assume that
1. X is Asplund and z € X is local optimal solution

2. ¢ and g are continuously Fréchet differentiable
(a fortiori strictly differentiable) around z

3. Q C X is nonempty, closed, and convex

4. either © or {0} is SNC at z or 0, respectively
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Problem Setup

Consider the nonlinear optimization problem
minp(z) s.t. g(z) =0and z € Q (1)
T
withp: X >R g: X = Y, and Q C X

» The Karush—Kuhn—Tucker (KKT) necessary conditions for (1) are

F(z,y) = <V(p(x);(§g(x>*y> + [N%’}Q)] 50 (2)

with duals y € Y* and normal cone N(-,Q) : X = X*
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Example

A discrete-time optimal control problem is given as

N &1 — ¥(6o,v0)
Enim5 Zﬂ(ék,vk) s.t. : =0and z € X xU
r=( 18N — N
(vo,...,vzv_1> k=0 , Ev —Y(EN—1,UN-1) =0
=p(z) — ()

where X and U are state and input constraint sets (polygonal or hyperboxes)

This problem is a nonlinear program (NLP):
» X and Y are finite-dimensional
» ¢ and g are (usually) twice differentiable

> () is given by linear constraints
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Generalized Newton Methods

Solve the KKT generalized equation

(v«p(x) + Vg(w)*y> N [N (z, Q)} 50

g9(z) {0}
=f(2) =N(z)
via the iteration
f(a) + H(z)(2r1 — 21) + N(2p41) 20 3)

for a suitable operator H(-) and z = (z,y)
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Generalized Newton Methods
Solve the KKT generalized equation

() Ll

=/(2) — N(2)

via the iteration

f(z) + H(z) (2hg1 — 21) + N(2zk41) 20

Remark (Sequential quadratic programming)
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Generalized Newton Methods
Solve the KKT generalized equation

() Ll

=/(2) — N(2)

via the iteration

f(z) + H(z) (2hg1 — 21) + N(2zk41) 20

Remark (Sequential linear programming)
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Generalized Newton Methods
Solve the KKT generalized equation

() Ll

=/(2) — N(2)

via the iteration

f(z) + H(z) (2hg1 — 21) + N(2zk41) 20

Remark (Projected gradient)
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Perturbed Newton Methods

Solve the perturbed generalized equation
f(z,v) + N(2)20
via the perturbed generalized Newton iteration
21 € P2, vi) et 2k, vk) + H(z, vp) (2h1 — 2) + N(2541) 20

for a suitable operator H(-)
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Strong Regularity

F is strongly regular at z for v € F(z) iff,
with neighbourhoods U of z and V of v,

YoeV, Flv)nU={s(v)}

and s(+) is Lipschitz continuous around v.
2

Figure: The inverse of z — 2°.

Equivalent: [Don21]
1. F is strongly regular at z for v,
2. F~! has Lipschitz continuous, single-valued localization at v for z

3. I is linearly open (a fortiori surjective) and locally injective at z for v
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ISS of Newton Methods

Let fu (2, z,v) = f(z,v) + H(z,v)(? — 2);

Theorem (|[CK24b
Suppose that
1. Z is a solution of f(-,0)+ N 30

2. fu ts uniformly Lipschitz continuous (constants v, and ~v,) at (Z, z,0)

3. fu(-,2,0) + N is strongly regular (constant k) at z for 0
and kv, < 1; then the iteration zg11 € P (2, v)
1s locally unique and locally input-to-state stable.
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ISS of Newton Methods

Let fu (2, z,v) = f(z,v) + H(z,v)(? — 2);

Theorem

Suppose that
1. z is a solution of f(-,0)+ N 30
2. fu ts uniformly Lipschitz continuous (constants v, and v,) at (Z,%,0)
3. fu(-,2,0) + N s strongly reqular (constant k) at z for 0

and k7, < 1; then the iteration zg11 € ®(z, v)
1s locally unique and locally input-to-state stable.

Proof sketch: The update has a locally unique solution s(-) with

lzk1 — 2l = Is(zk, vr) — 8(2,0)|| < Kllae — 2| + Kol vl

iR
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Generalized Implicit Function Theorem

Let fu (2, p) = f(p) + H(p)(? — p1) with p = (2, v);

Proposition ({Don21

Suppose that
1. z is a solution of fy(-,p) + N >0
2. fg is uniformly Lipschitz continuous (constant v,) at (Z, p)
3. fu(-,p) + N is strongly regular (constant k) at z for 0

then

S:p—={z€ X x Y*|fy(z,p) + N(2) 20}

has a Lipschitz continuous (constant k7yp) and single-valued
localization s(-) at p for Z.
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Strong Regularity in Nonlinear Optimization

The mapping

fu(p) + N (2, ) = f(B) + [gy Hﬂ (j:i) + N(z,9)

with H,, = 0 is strongly regular at z for 0 if and only if
min H,,(z — z,2 — z) + [V(z) — 0,)(z — )
st. 9(z) + Hy(z — %) =0, and z € Q

has a unique primal-dual solution (5, ys) for 6 = (d,,d,) close to 0 with

(251, Ys1) — (@52, ys2)|| < K||61 — 02|
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Nonlinear Programs revisited

Consider the nonlinear program
ming(z) s.t. g(z) =0and z € Q =RY, (4)
p >
withp: X 5 R, g: X > Y, and Q C X

Assume that
1. X and Y are finite-dimensional; and z € X is local optimal solution
2. p and g are twice continuously Fréchet differentiable

3. 1 = RY, is the nonnegative orthant

Note: N(z,R%;) CRZ,

'F: University of Stuttgart Characterizations of Strong Metric Regularity 22/
I \ Institute of Flight Mechanics and Controls Torbjgrn Cunis 32



Constraint Qualifications

MFCQ

If the constraint qualification
{Vg(@)ylye Y} N[~ N(z,RE,)] = {0}
holds and Vg(z) is surjective, then there exists y with F(z,y) = 0.
LICQ
If the active constraints
90 : T+ (Zicry, 9(x)), where 2, =0 & i € I,

have a surjective Vgo(z), then there exists a unique y with F(z,y) = 0.

iR
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Strong Stability in Nonlinear Programs

z € X is a stationary solution if and only if F(z,y) = 0 for some y € Y*.

Definition ({Koj80

A stationary solution Z is strongly stable if and only if there exists a
neighbourhood U of z and d > 0 such that

min p(z) + (Az + 0y, ) s.t. g(z) =6, and z + d, € RE,

has a unique stationary solution s(-) € U for ||(A,dy, 0y, 0z)|| < d which is
continuous at 0.
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Strong Stability & Strong Regularity

If F' is strongly regular at (z,y) for 0, then
> 7 is a strongly stable stationary solution
» MFCQ holds at z with unique dual ¥
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Strong Stability & Strong Regularity

If F' is strongly regular at (z,y) for 0, then
> 7 is a strongly stable stationary solution
» MFCQ holds at z with unique dual ¥

An optimal solution Z is a strongly stable stationary solution if and only if
» MFCQ holds

» the strong second-order sufficient condition is satisfied
(a fortiori, Z is a strict local minimum)
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Strong Stability & Strong Regularity

If F' is strongly regular at (z,y) for 0, then
> 7 is a strongly stable stationary solution
» MFCQ holds at z with unique dual ¥

An optimal solution Z is a strongly stable stationary solution if and only if
» MFCQ holds

» the strong second-order sufficient condition is satisfied
(a fortiori, Z is a strict local minimum)

If z is a strongly stable stationary solution and LICQ holds, then
» F is strongly regular at (z, y) for 0
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Strong Regularity beyond Nonlinear Programs

Consider again
minp(z) s.t. g(z) =0and z € Q (1)
T

with ¢ : X -5 R, g: X — Y (continuously differentiable, nonsmooth),
and Q C X (nonempty closed convex)

Conjecture (for suitable X and || - ||)

The KKT system of (1) is strongly reqular at (z,y) for 0 if and only if
1. MFCQ holds with unique duals under some perturbations,

2. the nonsmooth strong second-order sufficient condition
= e 2 =y M —112
Vs E€QNT, o)+ (3 9() + 2Ng@)? 2 ¢(@) + Lo -3l

is satisfied for some o, > 0 and neighbourhood U C X.
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Towards a Systems-theoretical Characterization
Consider the canonically perturbed optimization problem
mzin o(z) — (vg,z) s.t. g(z) = v, and z € Q (5)
with p: X >R, g: X = Y, and Q C X for (v;,v,) € X*x Y

» The KKT conditions for (5) become

Flz,y) = (W?(fv) +Vg(fr)*y> N [N(I, Q)] S <vx> ©)

9(z) {0} Uy
~~ d ~~ d SN——
e = N(2) =v

with duals y € y and normal cone N(-,Q) : X = X*
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Necessary Conditions for ISS

Suppose that the generalized Newton’s iteration
21 € (2w, vi) <= fz) + H(z) (241 — 2) — ve + N(2%) 20
is locally input-to-state stable around z € F~1(0), that is,

lo = 2l < a™l|20 = 2] + sup | vy
k>0

for all z € U, 241 € (I)H(Zkavk) NU,vw € V,and N>k >0,
where a € (0,1) and v > 0
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Necessary Conditions for ISS

Suppose that the generalized Newton’s iteration
Zk+1 € (I)H(Zk, Uk) < f(Zk) + H(zk)(ZkJrl — Zk) — VU + N(Zk) 50
is locally input-to-state stable around z € F~1(0), that is,

llzn — 2l < oNl20 — Z|| + sup || vk
k>0

» Any fixpoint z, € ® (2, v) N U for v € V satisfies

Iz0 = 2l < ~llv]]
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Necessary Conditions for ISS

Suppose that the generalized Newton’s iteration
Zk+1 € (I)H(Zk, vk) < f(Zk) + H(Zk>(zk+1 — Zk) — VU + N(Zk) 50
is locally input-to-state stable around z € F~1(0), that is,

la = 2l < a™l|z0 — 2]l + sup || v
k>0

» Any solution z, € (f + N)~1(v) N U for v € V satisfies

lz0 = Z[| < Al
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Sufficient Conditions for Strong Subregularity

Suppose that the generalized Newton’s iteration
Zk+1 € (I)H(Zk, vk) < f(Zk) + H(Zk>(zk+1 — Zk) — VU + N(Zk) 50
is locally input-to-state stable around z € F~1(0), that is,

la = 2l < a™l|z0 — 2]l + sup || v
k>0

» Any solution z, € (f + N)~1(v) N U for v € V satisfies
lz0 = Z|| < 7|0l

» Hence, f + N is strongly subregular at z for 0
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Sufficient Conditions for Strong Regularity

Theorem (work in progress)

If the generalized Newton’s iteration
241 € Pz, ) <= f(zx) + H(zp) (2541 — 2%) — vs + N(2) 2 0

1. has a fix point z, € Py (zy,v) N U for all ve V and
2. is locally incrementally ISS around z € F~1(0), that is,

Iz — znll < ¥l — 20l + 7 sup ||}, — vl
k>0

for all zé’) e U, z,g_)H € @H(zlgl), v,(cl)) NnU, U](C/) eV, N>k>0, where
€ (0,1) and v > 0,
Then f + N is strongly reqular at z for 0.
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Concluding Remarks

Regularity of the KKT conditions
» impacts sensitivity and stability in nonlinear optimization

» relates to stable stationary solutions and second-order sufficiency
conditions in nonlinear programs (NLP) and beyond

» applies to nonlinear optimization problems other than NLPs
e.g., nonconvex semidefinite or sum-of-squares programs
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Beyond Strong Regularity

» Strong regularity implies local incremental ISS and uniqueness under
perturbations

Alternatives:
1. Strong subregularity (implies ISS)

2. Metric regularity (implies existence)

Remark

Strong regularity and metric regularity are equivalent for NLPs.
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Nonlinear Sum-of-squares Optimization
A nonlinear polynomial program is
mgincp(g) s.t. g(&) =0 and & € X[z] (7)
with ¢ : R[z] — R, ¢ : R[z] — R[z], and sum-of-squares cone 3[z] C R]z]

» these problems arise in analysis and control synthesis of nonlinear
dynamic systems, e.g.,

min /R[V(x) — h(z)]?
sit. s(z) [V(z) = 1] = VV(2)Y(z) — e||z||* € X[z]
and V(z) — ¢|z||* € ¥[z] and s(z) € B[z]
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Nonlinear Sum-of-squares Optimization

A nonlinear polynomial program is
min () st 9(€) = 0 and € € Xl (7)
with ¢ : R[z] = R, g: R[z] — R]z], and sum-of-squares cone X[z] C R[z]

» generalized Newton’s iteration takes the form of a convex
sum-of-squares problem

» this iteration is asymptotically convergent under strong regularity
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