Nonlinear Sum-of-squares Optimization Theory, Methods, Applications

Torbjørn Cunis

University of Stuttgart Institute of Flight Mechanics and Control

University of Minnesota Aerospace Department March 20, 2025

Evolution of Flight Control Algorithms

Algorithms as Feedback

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Global Stability and the Region of Attraction

Global Stability A dynamic system $\dot{x} = f(x)$ is

globally asymptotically stable if and only if

$$\lim_{t \to \infty} \|x(t)\| = 0$$

for all $x(0) = x_0 \in \mathbb{R}^n$

Region of Attraction

A dynamic system $\dot{x} = f(x)$ is asymptotically stable on $\mathcal{R} \subset \mathbb{R}^n$ if and only if

 $\mathbf{x}_0 \in \mathcal{R} \Rightarrow \lim_{t \to \infty} \|\mathbf{x}(t)\| = 0$

and $x(\cdot) \subset \mathcal{R}$ for all $x(0) = x_0 \in \mathbb{R}^n$

Zubov's Equation

Proposition ([Zub64], cited after [GTV85])

Let $V : \mathbb{R}^n \to R$ be a Lyapunov candidate function; if

$$\langle \nabla V(x), f(x) \rangle = \phi(x) \left[V(x) - 1 \right] \tag{1}$$

for all $x \in \mathbb{R}^n$, where $\phi : \mathbb{R}^n \to \mathbb{R}$ is positive definite, then

 $\mathcal{R} = \{ x \in \mathbb{R}^n \mid V(x) < 1 \}$

is the region of attraction.

Relaxing Zubov's Equation

Let $V: \mathbb{R}^n \to R$ be a Lyapunov candidate function; if

$$\langle \nabla V(x), f(x) \rangle \le \phi(x) \left[V(x) - 1 \right]$$
 (2)

for all $x \in \mathbb{R}^n$, where $\phi : \mathbb{R}^n \to \mathbb{R}$ is positive definite, then

$$\hat{\mathcal{R}} = \{ x \in \mathbb{R}^n \mid V(x) < 1 \} \subseteq \mathcal{R}$$

is an *invariant subset* of the region of attraction.

Sum-of-squares Polynomials

Definition

W

A polynomial $f \in \mathbb{R}_{2d}[x]$ is sum-of-squares $(f \in \Sigma[x])$ if and only if

$$f = \sum_{i=1}^{n_d} (f_i)^2$$

with $f_1, \dots, f_{n_d} \in \mathbb{R}_d[x].$

Note: $f \in \Sigma[x] \Rightarrow \forall x \in \mathbb{R}^n, f(x) \ge 0$

Figure: Cones $\Sigma[x]$ and $\mathcal{P}[x]$ illustrated.

University of Stuttgart Institute of Flight Mechanics and Controls

Sum-of-squares Programming

Zubov's equation can further be relaxed to

 $\phi(x)\left[\,V(x)-1\right]-\langle\nabla\,V(x),f(x)\rangle\in\Sigma[x]$

which is a polynomial expression if $V, \phi, f \in \mathbb{R}[x]$

Applications

- ▶ region of attraction analysis [CSB11]
- ▶ dissipation-based analysis and design [EA06]
- ▶ synthesis of control and observer [JWFT⁺03, Tan06]
- ▶ control Lyapunov / barrier functions [PJ04, TP04, ACE⁺19]

Sum-of-squares Programming

Zubov's equation can further be relaxed to

 $\phi(x) \left[V(x) - 1 \right] - \langle \nabla V(x), f(x) \rangle \in \Sigma[x]$

which is a polynomial expression if $V, \phi, f \in \mathbb{R}[x]$ bilinear in V and ϕ

Applications

- ▶ region of attraction analysis [CSB11]
- ▶ dissipation-based analysis and design [EA06]
- ▶ synthesis of control and observer [JWFT⁺03, Tan06]
- ▶ control Lyapunov / barrier functions [PJ04, TP04, ACE⁺19]

most of which include *nonlinear* constraints

Nonlinear Sum-of-squares Optimization

A nonlinear polynomial optimization problem is

$$\min_{\xi} \varphi(\xi) \quad \text{s.t. } g(\xi) \in \Sigma[x] \text{ and } \xi \in \Sigma[x]$$
(3)

with $\varphi : \mathbb{R}[x] \to \mathbb{R}, g : \mathbb{R}[x] \to \mathbb{R}[x]$, and sum-of-squares cone $\Sigma[x] \subset \mathbb{R}[x]$

▶ these problems arise in analysis and control of nonlinear dynamic systems, e.g.,

$$\min \int_{\mathcal{R}} [V(x) - h(x)]^2$$

s.t. $s(x) [V(x) - 1] - \langle \nabla V(x), f(x) \rangle - \varepsilon ||x||^2 \in \Sigma[x]$
and $V(x) - \varepsilon ||x||^2 \in \Sigma[x]$ and $s(x) \in \Sigma[x]$

University of Stuttgart Institute of Flight Mechanics and Controls

Nonlinear Sum-of-squares Optimization

A nonlinear polynomial optimization problem is

$$\min_{\xi} \varphi(\xi) \quad \text{s.t. } g(\xi) \in \Sigma[x] \text{ and } \xi \in \Sigma[x]$$
(3)

with $\varphi : \mathbb{R}[x] \to \mathbb{R}, g : \mathbb{R}[x] \to \mathbb{R}[x]$, and sum-of-squares cone $\Sigma[x] \subset \mathbb{R}[x]$

generalized Newton's method takes the form of *convex* sum-of-squares problems

▶ this iteration is asymptotically convergent under strong regularity

Sequential Sum-of-squares Programming

Solve the (primal) nonlinear problem

$$\min_{\xi} \varphi(\xi) \quad \text{s.t.} \ g(\xi) \in \Sigma[x] \text{ and } \xi \in \Sigma[x]$$
(3)

via an iteration of convex approximations

$$\min_{\nu} \langle H(\xi_k)\nu,\nu\rangle + \nabla\varphi(\xi_k)\nu$$
s.t. $g(\xi_k) + \nabla g(\xi_k)\nu \in \Sigma[x]$ and $\xi_k + \nu \in \Sigma[x]$ (4)

for some suitable operator $H(\cdot):\mathbb{R}[x]\to\mathbb{R}[x]^*$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Necessary Conditions for Sum-of-squares

The nonlinear Karush-Kuhn-Tucker (KKT) conditions are

$$\underbrace{\begin{pmatrix} \nabla\varphi(\xi) + \nabla g(\xi)^*\eta \\ g(\xi) \\ \hline \end{array}_{=f(z)} + \underbrace{\begin{bmatrix} N(\xi, \Sigma[x]) \\ N(\eta, \Sigma[x]^*) \end{bmatrix}}_{=F(z)} \ni 0$$
(5)

and the convex KKT conditions are

$$\underbrace{\begin{pmatrix} \nabla\varphi(\xi_k) \\ g(\xi_k) \end{pmatrix}}_{=f(z_k)} + \underbrace{\begin{bmatrix} H(\xi_k) & \nabla g(\xi_k)^* \\ \nabla g(\xi_k) & 0 \end{bmatrix}}_{=\mathcal{H}(z_k) \approx \nabla f(z_k)} \begin{pmatrix} \xi - \xi_k \\ \eta - \eta_k \end{pmatrix} + \underbrace{\begin{bmatrix} N(x,\Omega) \\ \{0\} \end{bmatrix}}_{=F(z)} \ni 0 \quad (6)$$

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

 $\min_{x} \varphi(x) \quad \text{s.t. } x \in C \qquad \qquad \nabla \varphi(x) + N(x, C) \ni 0$

Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

$$\min_{x} \varphi(x) \quad \text{s.t. } x \in \mathbb{C} \qquad \qquad \nabla \varphi(x) + N(x, \mathbb{C}) \ni 0$$

2. Approximate at x_k

$$\min_{x} \frac{1}{2} \nabla^{2} \varphi(x_{k})(x - x_{k}, x - x_{k}) \qquad \nabla \varphi(x_{k}) + \nabla^{2} \varphi(x_{k})(x - x_{k}) + \nabla \varphi(x_{k})(x - x_{k}) \quad \text{s.t.} \ x \in \mathbf{C} \qquad \qquad + N(x, \mathbf{C}) \ni 0$$

Brief Introduction: Newton Methods

1. Primal problem and its necessary conditions

$$\min_{x} \varphi(x) \quad \text{s.t. } x \in C \qquad \qquad \nabla \varphi(x) + N(x, C) \ni 0$$

2. Approximate at x_k

$$\min_{x} \frac{1}{2} \nabla^{2} \varphi(x_{k})(x - x_{k}, x - x_{k}) \qquad \nabla \varphi(x_{k}) + \nabla^{2} \varphi(x_{k})(x - x_{k}) \\
+ \nabla \varphi(x_{k})(x - x_{k}) \quad \text{s.t.} \ x \in \mathbf{C} \qquad \qquad + N(x, \mathbf{C}) \ni 0$$

3. Solve for next iterate

$$x_{k+1} \in \left[\nabla^2 \varphi(x_k) + N(\cdot, \mathbf{C})\right]^{-1} \left(\nabla^2 \varphi(x_k) x_k - \nabla \varphi(x_k)\right)$$

and repeat.

IFR University of Stuttgart Institute of Flight Mechanics and Controls

Newton Methods for Nonlinear Optimization

1. Necessary conditions

 $f(z) + F(z) \ni 0$

2. Approximate at z_k

$$f(z_k) + \mathcal{H}(z_k)(z - z_k) + F(z) \ge 0$$

3. Solve for next iterate

$$z_{k+1} \in \Phi(z_k) := \left[\mathcal{H}(z_k) + \mathbf{F}\right]^{-1} \left(\mathcal{H}(z_k) z_k - f(z_k)\right)$$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Strong Regularity

Definition

f + F is strongly regular at \overline{z} for 0 iff, with neighbourhoods U of \overline{z} and V of 0,

$$\forall v \in V, \quad F^{-1}(v) \cap U = \{s(v)\}$$

and $s(\cdot)$ is Lipschitz continuous around 0.

Figure: The inverse of $z \mapsto z^2$.

Equivalent: [Don21]

- 1. F is strongly regular at \bar{z} for \bar{v} ,
- 2. F^{-1} has Lipschitz continuous, single-valued localization at \bar{v} for \bar{z}
- 3. F is linearly open (a fortiori surjective) and locally injective at \bar{z} for \bar{v}

Asymptotic Convergence of Newton Methods

Let
$$f_H(z', z) = f(z) + \mathcal{H}(z)(z'-z);$$

Theorem ([CL23, CK24])

Suppose that

- **1.** \overline{z} is a solution of $f + F \ni 0$
- 2. $f_H(z', \cdot)$ is uniformly Lipschitz continuous (constants γ) at (\bar{z}, \bar{z})
- **3.** $f_H(\cdot, \bar{z}) + F$ is strongly regular (constant κ) at \bar{z} for 0

and $\kappa \gamma < 1$; then the iteration $z_{k+1} \in \Phi(z_k)$ is locally unique and locally asymptotically stable.

Asymptotic Convergence of Newton Methods

Let
$$f_H(z', z) = f(z) + \mathcal{H}(z)(z'-z);$$

Theorem ([CL23, CK24])

 $Suppose \ that$

1. \overline{z} is a solution of $f + F \ni 0$

2. $f_H(z', \cdot)$ is uniformly Lipschitz continuous (constants γ) at (\bar{z}, \bar{z})

3. $f_H(\cdot, \bar{z}) + F$ is strongly regular (constant κ) at \bar{z} for 0

and $\kappa \gamma < 1$; then the iteration $z_{k+1} \in \Phi(z_k)$

is locally unique and locally asymptotically stable.

Proof sketch: The update has a locally unique solution $s(\cdot)$ with

$$\|z_{k+1} - \bar{z}\| = \|s(z_k) - s(\bar{z})\| \le \kappa \gamma_z \|z_k - \bar{z}\|$$

Strong Regularity in Nonlinear Optimization

The mapping

$$f_H(\cdot,\bar{z}) + F: (\xi,\eta) \mapsto f(\bar{z}) + \begin{bmatrix} H & \nabla g^*(\bar{\xi}) \\ \nabla g(\bar{\xi}) & 0 \end{bmatrix} \begin{pmatrix} \xi - \bar{\xi} \\ \eta - \bar{\eta} \end{pmatrix} + F(z)$$

with $H \succeq 0$ is strongly regular at \overline{z} for 0 if and only if

$$\begin{split} \min_{x} H(\xi - \bar{\xi}, \xi - \bar{\xi}) + [\nabla \varphi(\bar{\xi}) - d_{\xi}](\xi - \bar{\xi}) \\ \text{s.t.} \ g(\bar{\xi}) + \nabla g(\bar{\xi})(\xi - \bar{\xi}) \in d_{\eta} + \Sigma[x] \text{ and } \xi \in \Sigma[x] \end{split}$$

has a unique primal-dual solution (ξ_d, η_d) for $d = (d_{\xi}, d_{\eta})$ close to 0 with

 $\|(\xi_{d1}, \eta_{d1}) - (\xi_{d2}, \eta_{d2})\| \le \kappa \|d_1 - d_2\|$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Globalization Techniques

Trust-region techniques: to ensure that ξ_{k+1} ∈ ξ_k + U,
 1. add constraint ||ξ − ξ_k|| ≤ ρ
 2. add regularization ^ρ/₂ ||ξ − ξ_k||²

- ► Line-search methods: find new solution $\xi_{k+1} = (1 \alpha)\xi_k + \alpha\xi^*$ subject to $\alpha \in (0, 1]$ and
 - 1. minimizes merit function

 $\phi(\xi_{\alpha}) := \varphi(\xi_{\alpha}) + \frac{\varrho}{2} \operatorname{viol}(\xi_{\alpha})^{2}$

2. accepted by filter if

 $\varphi(\xi_{\alpha}) < \varphi(\xi_k) \wedge \operatorname{viol}(\xi_{\alpha}) < \operatorname{viol}(\xi_k)$

Figure: Newton iteration.

Q University of Stuttgart Institute of Flight Mechanics and Controls

Constraint Violation

Goal of viol(ξ_0): measure distance of $g(\xi_0)$ to sum-of-squares cone

1. distance function

$$\min_{\gamma} \frac{1}{2} \|\gamma - g(\xi_0)\|^2 \quad \text{s.t. } \gamma \in \Sigma[x]$$

2. signed distance

$$\min\{r \in \mathbb{R} \quad \text{s.t.} \ g(\xi_0) + r \,\vec{\gamma} \in \Sigma[x]\}$$

where $\vec{\gamma} \in \operatorname{int} \Sigma[x]$

FR University of Stuttgart Institute of Flight Mechanics and Controls

Example: Region of Attraction Estimation

• find Lyapunov candidate $V(\cdot)$ with

 $V(x) \le 1 \Rightarrow \langle \nabla V(x), f(x) \rangle < 0$

for all $x \in \mathbb{R}^n$ (here n = 4)

Optimal solution found after
 6 iterations

Figure: Region-of-attraction estimate for GTM longitudinal motion.

Example: Nonlinear Control Synthesis

▶ find Lyapunov candidate $V(\cdot)$ and feedback $k(\cdot)$ with

 $V(x) \le 1 \Rightarrow \langle \nabla V(x), f(x, k(x)) \rangle < 0$

for all $x \in \mathbb{R}^n$ (here n = 4)

Optimal solution found after
 9 iterations

Figure: Nonlinear control synthesis for GTM longitudinal motion.

Remark on Quadratic Cost Functions

▶ we often want to 'maximize' a semialgebraic set $\{x \in \mathbb{R}^n \mid V(x) \leq 1\}$ subject to bilinear constraints

• the quadratic cost of the convex approximation then becomes $\nabla_V^2 \left[\varphi(V_k) + \langle \eta_k, q(V_k, s_k) \rangle \right] = \nabla_V^2 \varphi(V_k)$

▶ Suggestion: use quadratic distance to reference $h \in \mathbb{R}[x]$; viz.

$$\varphi(V) = \int_{\Omega} (V - h)^2(x) dx$$

where $\Omega \supseteq \{x \in \mathbb{R}^n \,|\, h(x) \le 1\}$

University of Stuttgart Institute of Flight Mechanics and Controls

Nonlinear Sum-of-squares Optimization Suite

$Ca\Sigma oS$ [CO25]

versatile, optimization-oriented software for convex, quasiconvex, and nonconvex (nonlinear) sum-of-squares problems

$$\min_{\xi} \varphi(\xi) \quad \text{s.t. } \xi \in \mathcal{K}_1, \ g(\xi) \in \mathcal{K}_2$$

• supported cones $(\mathcal{K}_1, \mathcal{K}_2)$:

- 1. sum-of-squares, (S)DSOS
- 2. PSD, (S)DD matrices
- 3. (rotated) Lorentz, power, exp

https://github.com/ifr-acso/casos

Nonlinear Sum-of-squares Optimization Suite

 CaΣoS significantly reduces the parsing time in repeatedly solved convex sum-of-squares problems

Figure: Comparison of sum-of-squares toolboxes. (A: CaΣoS, B: SOSTOOLS (dpvar), C: SOSTOOLS (pvar), D: SOSOPT, E: SPOTLESS, F: YALMIP, G: SUMOFSQUARES.JL)

Case Study: Model Predictive Control

 Model Predictive Control (MPC) solves the control problem

$$\min_{\mathbf{u},\mathbf{x}} P(x_T) + \sum_{t=0}^{T-1} L(x_t, u_t),$$

$$x_{t+1} = f(x_t, u_t)$$
s.t. $x_t \in \mathcal{X}$
 $u_t \in \mathcal{U}$
 $x_T \in \mathcal{X}_T$
 $t \in [0, T),$

▶ MPC feedback stabilizes f on the reach-avoid set $\mathcal{R}_{[0,T]}$ [CK21]

Figure: $\mathcal{R}_{[0,T]}$ is invariant under MPC feedback (illustration from [OFC24]).

Case Study: Horizon-one MPC

Approach [OFC24]

Solve for

1. inner estimate of reach-avoid set

$$\hat{\mathcal{R}} = \{ x \in \mathbb{R}^n \mid V(0, x) \le 0 \} \subset \mathcal{R}_{[0, T]}$$

via a dissipation inequality

2. horizon-one MPC feedback

$$\min_{u \in \mathcal{U}} \alpha V(1, f(x_0, u)) + L(x_0, u)$$

s.t. $V(1, f(x_0, u)) \le 0$

Figure: Comparison of closed-loop responses under MPC approaches.

University of Stuttgart Institute of Flight Mechanics and Controls

Case Study: Horizon-one MPC

Approach [OFC24]

Solve for

1. inner estimate of reach-avoid set

 $\hat{\mathcal{R}} = \{ x \in \mathbb{R}^n \mid V(0, x) \le 0 \} \subset \mathcal{R}_{[0, T]}$

via a dissipation inequality

Figure: Comparison of closed-loop responses under MPC approaches.

FR University of Stuttgart Institute of Flight Mechanics and Controls

Concluding Remarks

- sum-of-squares optimization is a powerful tool for nonlinear system analysis and control synthesis
- real-world problems are nonconvex and often large-scale
- nonlinear optimization theory supports sequential methods, decomposition techniques, and inexact optimization

Figure: Computation of SOS certificates is hard, validation is tractable.

Acknowledgments

Thank you!

tcunis@ifr.uni-stuttgart.de
 tcunis@umich.edu

References I

- Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and Paulo Tabuada, *Control Barrier Functions: Theory and Applications*, 18th European Control Conference (Naples, IT), 2019, pp. 3420–3431.
- Torbjørn Cunis and Ilya Kolmanovsky, *Viability, viscosity, and storage functions in model-predictive control with terminal constraints*, Automatica **131** (2021), no. 109748, Publisher: Elsevier Ltd.
- Input-to-State Stability of Newton Methods for Generalized Equations in Nonlinear Optimization, 2024 IEEE Conference on Decision and Control (Milano), 2024.
- Torbjørn Cunis and Benoît Legat, Sequential sum-of-squares programming for analysis of nonlinear systems, 2023 American Control Conference (San Diego, CA), 2023, arXiv: 2210.02142, pp. 756–762.

References II

- Torbjørn Cunis and Jan Olucak, CaΣoS: A nonlinear sum-of-squares optimization suite, 2025 American Control Conference (Boulder, CA), 2025, To be presented July 2025.
- Abhijit Chakraborty, Peter Seiler, and Gary J. Balas, Nonlinear region of attraction analysis for flight control verification and validation, Control Engineering Practice **19** (2011), no. 4, 335–345, Publisher: Elsevier.
- Asen L. Dontchev, *Lectures on Variational Analysis*, Springer, Cham, 2021, Series Title: Applied Mathematical Sciences Issue: 205 ISSN: 2196968X.
- Christian Ebenbauer and Frank Allgöwer, Analysis and design of polynomial control systems using dissipation inequalities and sum of squares, Computers and Chemical Engineering **30** (2006), 1590–1602.

References III

- Roberto Genesio, Michele Tartaglia, and Antonio Vicino, On the Estimation of Asymptotic Stability Regions: State of the Art and New Proposals, IEEE Transactions on Automatic Control **30** (1985), no. 8, 747–755, ISBN: 0018-9286.
- Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun, and Andrew Packard, *Some Controls Applications of Sum of Squares Programming*, Proceedings of the IEEE Conference on Decision and Control (Maui, US-HI), vol. 5, 2003, ISSN: 01912216, pp. 4676–4681.
- Jan Olucak, Walter Fichter, and Torbjørn Cunis, Nonlinear Horizon-one Model Predictive Control for Resource Limited Applications, 2024 American Control Conference (Toronto), 2024, pp. 3980–3986.

References IV

- Stephen Prajna and Ali Jadbabaie, *Safety verification of hybrid systems using barrier certificates*, Hybrid Systems: Computation and Control (Rajeev Alur and George J. Pappas, eds.), Springer, 2004, pp. 477–492.
- Weehong Tan, Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming, Ph.D. thesis, University of California, Berkeley, Berkeley, US-CA, 2006, ISBN: 9780542826740.
- Weehong Tan and Andrew Packard, *Searching for control lyapunov functions using sums of squares programming*, 2004.
- V I Zubov, Methods of A. M. Lyapunov and their Application, P. Noordhoff, Groningen, NL, 1964.