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Evolution of Flight Control Algorithms
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Algorithms as Feedback

99  # SUBROUTINE TO CONVERT LAT,LONG,ALT AT GIVEN TIME TO RADIUS VECTOR
100  # 
117  # OUTPUT
118  #      R-VECTOR IN ALPHAV        (METERS B-29)
119
120  LALOTORV  STQ     SETPD      # LAT,LONG,ALT TO R VECTOR
121                    INCORPEX
122                    0D
123            STCALL  6D         # 6-7D= TIME FOR RP-TO-R
124                    SETGAMMA   # GAMMA=B2/A2 FOR EARTH, 1 FOR MOON B-1
125            DLOAD   SIN        #             COS(LONG)COS(LAT) IN MPAC
126                    LAT        #   UNIT RP = SIN(LONG)COS(LAT)    2-3D
127            DMPR    PDDL       # PD 2        GAMMA*SIN(LAT)       0-1D

commands

measured flight state
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Global Stability and the Region of Attraction

Global Stability
A dynamic system ẋ = f (x) is
globally asymptotically stable
if and only if

lim
t→∞

‖x(t)‖ = 0

for all x(0) = x0 ∈ Rn

Region of Attraction
A dynamic system ẋ = f (x) is
asymptotically stable on R ⊂ Rn

if and only if

x0 ∈ R ⇒ lim
t→∞

‖x(t)‖ = 0

and x(·) ⊂ R for all x(0) = x0 ∈ Rn
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Zubov’s Equation

Proposition ([Zub64], cited after [GTV85])
Let V : Rn → R be a Lyapunov candidate function; if

〈∇V (x), f (x)〉 = φ(x) [V (x)− 1] (1)

for all x ∈ Rn, where φ : Rn → R is positive definite, then

R = {x ∈ Rn |V (x) < 1}

is the region of attraction.

University of Stuttgart
Institute of Flight Mechanics and Controls

Nonlinear Sum-of-squares Optimization
Torbjørn Cunis

5/
27



Relaxing Zubov’s Equation

Let V : Rn → R be a Lyapunov candidate function; if

〈∇V (x), f (x)〉 ≤ φ(x) [V (x)− 1] (2)

for all x ∈ Rn, where φ : Rn → R is positive definite, then

R̂ = {x ∈ Rn |V (x) < 1} ⊆ R

is an invariant subset of the region of attraction.
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Sum-of-squares Polynomials

Definition
A polynomial f ∈ R2d [x] is
sum-of-squares (f ∈ Σ[x])
if and only if

f =

nd∑
i=1

(fi)2

with f1, . . . , fnd ∈ Rd [x].

Note: f ∈ Σ[x] ⇒ ∀x ∈ Rn, f (x) ≥ 0

Σ 𝑥

𝒫 𝑥
sum-of-squares cone

cone of nonnegative polynomials

𝑓 = ∑ 𝑓!"!

𝑝 ⋅ ≥ 0

Figure: Cones Σ[x] and P[x] illustrated.
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Sum-of-squares Programming

Zubov’s equation can further be relaxed to

φ(x) [V (x)− 1]− 〈∇V (x), f (x)〉 ∈ Σ[x]

which is a polynomial expression if V , φ, f ∈ R[x]

Applications
I region of attraction analysis [CSB11]
I dissipation-based analysis and design [EA06]
I synthesis of control and observer [JWFT+03, Tan06]
I control Lyapunov / barrier functions [PJ04, TP04, ACE+19]
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Sum-of-squares Programming

Zubov’s equation can further be relaxed to

φ(x) [V (x)− 1]− 〈∇V (x), f (x)〉 ∈ Σ[x]

which is a polynomial expression if V , φ, f ∈ R[x] bilinear in V and φ

Applications
I region of attraction analysis [CSB11]
I dissipation-based analysis and design [EA06]
I synthesis of control and observer [JWFT+03, Tan06]
I control Lyapunov / barrier functions [PJ04, TP04, ACE+19]

most of which include nonlinear constraints
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Nonlinear Sum-of-squares Optimization

A nonlinear polynomial optimization problem is

min
ξ

ϕ(ξ) s.t. g(ξ) ∈ Σ[x] and ξ ∈ Σ[x] (3)

with ϕ : R[x] → R, g : R[x] → R[x], and sum-of-squares cone Σ[x] ⊂ R[x]

I these problems arise in analysis and control of nonlinear dynamic
systems, e.g.,

min

∫
R
[V (x)− h(x)]2

s.t. s(x) [V (x)− 1]− 〈∇V (x), f (x)〉 − ε‖x‖2 ∈ Σ[x]
and V (x)− ε‖x‖2 ∈ Σ[x] and s(x) ∈ Σ[x]
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Nonlinear Sum-of-squares Optimization

A nonlinear polynomial optimization problem is

min
ξ

ϕ(ξ) s.t. g(ξ) ∈ Σ[x] and ξ ∈ Σ[x] (3)

with ϕ : R[x] → R, g : R[x] → R[x], and sum-of-squares cone Σ[x] ⊂ R[x]

I generalized Newton’s method takes the form of convex sum-of-squares
problems

I this iteration is asymptotically convergent under strong regularity
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Sequential Sum-of-squares Programming

Solve the (primal) nonlinear problem

min
ξ

ϕ(ξ) s.t. g(ξ) ∈ Σ[x] and ξ ∈ Σ[x] (3)

via an iteration of convex approximations

min
ν

〈H (ξk)ν, ν〉+∇ϕ(ξk)ν

s.t. g(ξk) +∇g(ξk)ν ∈ Σ[x] and ξk + ν ∈ Σ[x] (4)

for some suitable operator H (·) : R[x] → R[x]∗
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Necessary Conditions for Sum-of-squares

The nonlinear Karush-Kuhn-Tucker (KKT) conditions are(
∇ϕ(ξ) +∇g(ξ)∗η

g(ξ)

)
︸ ︷︷ ︸

= f (z)

+

[
N (ξ,Σ[x])
N (η,Σ[x]∗)

]
︸ ︷︷ ︸

=F(z)

3 0 (5)

and the convex KKT conditions are(
∇ϕ(ξk)
g(ξk)

)
︸ ︷︷ ︸

= f (zk)

+

[
H (ξk) ∇g(ξk)

∗

∇g(ξk) 0

]
︸ ︷︷ ︸

=H(zk)≈∇f (zk)

(
ξ − ξk
η − ηk

)
+

[
N (x,Ω)
{0}

]
︸ ︷︷ ︸

=F(z)

3 0 (6)
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Brief Introduction: Newton Methods
1. Primal problem and its necessary conditions

min
x

ϕ(x) s.t. x ∈ C ∇ϕ(x) + N (x,C) 3 0

2. Approximate at xk

min
x

1
2∇

2ϕ(xk)(x − xk , x − xk)

+∇ϕ(xk)(x − xk) s.t. x ∈ C

∇ϕ(xk) +∇2ϕ(xk)(x − xk)

+ N (x,C) 3 0

3. Solve for next iterate

xk+1 ∈
[
∇2ϕ(xk) + N (·,C)

]−1(∇2ϕ(xk)xk −∇ϕ(xk)
)

and repeat.
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Newton Methods for Nonlinear Optimization

1. Necessary conditions

f (z) + F(z) 3 0

2. Approximate at zk

f (zk) +H(zk)(z − zk) + F(z) 3 0

3. Solve for next iterate

zk+1 ∈ Φ(zk) :=
[
H(zk) + F

]−1(H(zk)zk − f (zk)
)
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Strong Regularity

Definition
f + F is strongly regular at z̄ for 0 iff,
with neighbourhoods U of z̄ and V of 0,

∀v ∈ V , F−1(v) ∩ U = {s(v)}

and s(·) is Lipschitz continuous around 0.
Figure: The inverse of z 7→ z2.

Equivalent: [Don21]
1. F is strongly regular at z̄ for v̄,
2. F−1 has Lipschitz continuous, single-valued localization at v̄ for z̄
3. F is linearly open (a fortiori surjective) and locally injective at z̄ for v̄
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Asymptotic Convergence of Newton Methods

Let fH (z ′, z) = f (z) +H(z)(z ′ − z);

Theorem ([CL23, CK24])
Suppose that

1. z̄ is a solution of f + F 3 0
2. fH (z ′, ·) is uniformly Lipschitz continuous (constants γ) at (z̄, z̄)
3. fH (·, z̄) + F is strongly regular (constant κ) at z̄ for 0

and κγ < 1; then the iteration zk+1 ∈ Φ(zk)
is locally unique and locally asymptotically stable.
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Asymptotic Convergence of Newton Methods

Let fH (z ′, z) = f (z) +H(z)(z ′ − z);

Theorem ([CL23, CK24])
Suppose that

1. z̄ is a solution of f + F 3 0
2. fH (z ′, ·) is uniformly Lipschitz continuous (constants γ) at (z̄, z̄)
3. fH (·, z̄) + F is strongly regular (constant κ) at z̄ for 0

and κγ < 1; then the iteration zk+1 ∈ Φ(zk)
is locally unique and locally asymptotically stable.

Proof sketch: The update has a locally unique solution s(·) with

‖zk+1 − z̄‖ = ‖s(zk)− s(z̄)‖ ≤ κγz‖zk − z̄‖
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Strong Regularity in Nonlinear Optimization

The mapping

fH (·, z̄) + F : (ξ, η) 7→ f (z̄) +
[

H ∇g∗(ξ̄)
∇g(ξ̄) 0

](
ξ − ξ̄
η − η̄

)
+ F(z)

with H � 0 is strongly regular at z̄ for 0 if and only if

min
x

H (ξ − ξ̄, ξ − ξ̄) + [∇ϕ(ξ̄)− dξ](ξ − ξ̄)

s.t. g(ξ̄) +∇g(ξ̄)(ξ − ξ̄) ∈ dη +Σ[x] and ξ ∈ Σ[x]

has a unique primal-dual solution (ξd , ηd) for d = (dξ, dη) close to 0 with

‖(ξd1, ηd1)− (ξd2, ηd2)‖ ≤ κ‖d1 − d2‖
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Globalization Techniques
I Trust-region techniques: to

ensure that ξk+1 ∈ ξk + U ,
1. add constraint ‖ξ − ξk‖ ≤ %
2. add regularization %

2‖ξ − ξk‖2

I Line-search methods: find new
solution ξk+1 = (1 − α)ξk + αξ∗

subject to α ∈ (0, 1] and
1. minimizes merit function

φ(ξα) := ϕ(ξα) +
%

2
viol(ξα)

2

2. accepted by filter if

ϕ(ξα) < ϕ(ξk) ∧ viol(ξα) < viol(ξk)

00

00

Figure: Newton iteration.
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Constraint Violation

Goal of viol(ξ0): measure distance of g(ξ0) to sum-of-squares cone

1. distance function

min
γ

1
2
‖γ − g(ξ0)‖2 s.t. γ ∈ Σ[x]

2. signed distance

min{r ∈ R s.t. g(ξ0) + r ~γ ∈ Σ[x]}

where ~γ ∈ intΣ[x]
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Example: Region of Attraction Estimation

I find Lyapunov candidate V (·)
with

V (x) ≤ 1 ⇒ 〈∇V (x), f (x)〉 < 0

for all x ∈ Rn (here n = 4)

I Optimal solution found after
6 iterations

Figure: Region-of-attraction estimate for
GTM longitudinal motion.
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Example: Nonlinear Control Synthesis

I find Lyapunov candidate V (·)
and feedback k(·) with

V (x) ≤ 1 ⇒ 〈∇V (x), f (x, k(x))〉 < 0

for all x ∈ Rn (here n = 4)

I Optimal solution found after
9 iterations

Figure: Nonlinear control synthesis for
GTM longitudinal motion.
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Remark on Quadratic Cost Functions
I we often want to ‘maximize’ a semialgebraic set {x ∈ Rn |V (x) ≤ 1}

subject to bilinear constraints

I the quadratic cost of the convex approximation then becomes

∇2
V
[
ϕ(Vk) + 〈ηk , g(Vk , sk)〉

]
= ∇2

Vϕ(Vk)

I Suggestion: use quadratic distance to reference h ∈ R[x]; viz.

ϕ(V ) =

∫
Ω
(V − h)2(x)dx

where Ω ⊇ {x ∈ Rn | h(x) ≤ 1}
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Nonlinear Sum-of-squares Optimization Suite

CaΣoS [CO25]
versatile, optimization-oriented
software for convex, quasiconvex, and
nonconvex (nonlinear)
sum-of-squares problems

min
ξ

ϕ(ξ) s.t. ξ ∈ K1, g(ξ) ∈ K2

I supported cones (K1, K2):
1. sum-of-squares, (S)DSOS
2. PSD, (S)DD matrices
3. (rotated) Lorentz, power, exp

nonlinear SOS interfaces

parametrized SOS interface

parametrized SDP interface

conic 
solvers casadi

symbols

symbolic 
polynomials

casadi
symbols

polynomial 
differentiation

symbolic 
polynomials

linear 
operators

casadi
symbols

CasADi symbolic framework

symbolic polynomials

https://github.com/ifr-acso/casos

University of Stuttgart
Institute of Flight Mechanics and Controls

Nonlinear Sum-of-squares Optimization
Torbjørn Cunis

22/
27

https://github.com/ifr-acso/casos


Nonlinear Sum-of-squares Optimization Suite
I CaΣoS significantly reduces the parsing time in repeatedly solved

convex sum-of-squares problems

A B C D E F G
0

200

400
Ti

m
e

(s
)

Parse time
Solve time

Figure: Comparison of sum-of-squares toolboxes. (A: CaΣoS, B: SOSTOOLS (dpvar),

C: SOSTOOLS (pvar), D: sosopt, E: SPOTless, F: YALMIP, G: SumOfSquares.jl)
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Case Study: Model Predictive Control

I Model Predictive Control (MPC)
solves the control problem

min
u,x

P(xT ) +

T−1∑
t=0

L(xt , ut),

s.t.
xt+1 = f (xt , ut)

xt ∈ X
ut ∈ U

 t ∈ [0,T),

xT ∈ XT

I MPC feedback stabilizes f on
the reach-avoid set R[0,T ] [CK21]

t0 t1 t2 T

u(t)

x(t)

Figure: R[0,T] is invariant under MPC
feedback (illustration from [OFC24]).
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Case Study: Horizon-one MPC
Approach [OFC24]
Solve for

1. inner estimate of reach-avoid set

R̂ = {x ∈ Rn |V (0, x) ≤ 0} ⊂ R[0,T ]

via a dissipation inequality

2. horizon-one MPC feedback

min
u∈U

αV (1, f (x0, u)) + L(x0, u)

s.t. V (1, f (x0, u)) ≤ 0

0 100 200 300 400 500

0.04

0.02

0

σ
1

Full-horizon RTI
Horizon-one α = 13.69 Horizon-one α = 1

0 100 200 300 400 500

0.2

0.1

0

σ
2

0 100 200 300 400 500

0.04

0.02

0

Simulation Time [s]

σ
3

Figure: Comparison of closed-loop
responses under MPC approaches.
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Concluding Remarks

I sum-of-squares optimization is a
powerful tool for nonlinear system
analysis and control synthesis

I real-world problems are nonconvex and
often large-scale

I nonlinear optimization theory supports
sequential methods, decomposition
techniques, and inexact optimization

generate certificate
Manufacturer

verify correctnessapprove design
Regulatory
Authority

> NP

~ P

Figure: Computation of SOS
certificates is hard, validation is
tractable.
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