

Universität Stuttgart

Institut für Flugmechanik und Flugregelung

NONLINEAR SYSTEM ANALYSIS

Stability guarantees for nonlinear model-predictive control via sum-of-squares

Motivation

Stability of a closed-loop model-predictive control approach often relies on a reference-dependent, invariant terminal set. For nonlinear dynamics, computing terminal sets that are invariant is a nontrivial problem. Sum-of-squares methods provide a systematic way of certifying invariance for polynomial systems. A well-known drawback of SOS-based approaches is its *curse of dimensionality*, i.e., the stark increase of complexity for larger number of state variables and/or polynomial order. In that case, diagonally-dominant sum-of-squares (DSOS) might provide a more tractable alternative to SOS.

Problem formulation

Aerospace dynamical systems commonly entail about 6–8 states and require a certain degree of accuracy to represent nonlinear effects. This limits the use of sumof-squares methods when certifying stability of model-predictive control schemes for nonlinear flight dynamics. This thesis seek to explore NMPC-related guarantees that can be computed using sum-of-squares methods, and solutions for those that cannot.

Tasks

- Literature review of tractable SOS methods for full-envelope flight dynamics
- Characterization of NMPC stability guarantees as sum-of-squares problems
- Implementation of analysis methods via SOS and DSOS (potentially using the existing <u>bisosprob</u> / <u>sosfactory</u> toolboxes)
- Evaluation of complexity, conservativeness, and closed-loop performance

Requirements

Have, or be willing to acquire,

- good understanding of nonlinear system and control theory
- some knowledge of convex and nonconvex optimization

The thesis can be written in German or English. Publication of results is envisaged.

Contact

Dr. Torbjørn Cunis

Institute of Flight Mechanics and Control Pfaffenwaldring 27, 70569 Stuttgart T: 0711 68566617 torbjoern.cunis@ifr.uni-stuttgart.de

Master thesis

Universität Stuttgart

Institut für Flugmechanik und Flugregelung

Stability guarantees for nonlinear model-predictive control via sum-of-squares

Figure from Cotorruelo et al. 2021

Literature

Chakraborty, A., Seiler, P., & Balas, G. J. (2011). Susceptibility of F/A-18 Flight Controllers to the Falling-leaf Mode: Nonlinear Analysis. *Journal of Guidance, Control, and Dynamics, 34*(2), 73–85. doi: 10.2514/1.50675

Cotorruelo, A., Hosseinzadeh, M., Ramirez, D. R., Limon, D., and Garone, E. (2021). Reference dependent invariant sets: Sum of squares based computation and applications in constrained control. *Automatica*, 129, 109614. doi: 10.1016/j.automatica.2021.109614

Ahmadi, A. A., & Majumdar, A. (2019). DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization. *SIAM Journal on Applied Algebra and Geometry*, *3*(2), 193–230. doi: 10.1137/18M118935X

