NONLINEAR SYSTEM ANALYSIS

State estimation with Sum-of-Squares programming

Motivation

The general problem of estimating the state of a nonlinear system given noisy measurement data is critical for system monitoring and controller feedback stability. Recent advances in sum-of-squares programming led to the development of multiple tools in analysis of nonlinear systems without linearization. Limited work has been done to use sum-of-squares in state estimation and how does applying this tool compares to conventional state estimation techniques such as extended Kalman filter.

Problem Statement

Our attention is directed to discrete-time systems as follows,

$$x_{k+1} = f_k(x_k) + w_k, k = 1, 2, ...$$

 $z_k = h_k(x_k) + v_k, k = 1, 2, ...$ (1)

With f_k and h_k being nonlinear functions, and w_k and v_k being process disturbance and measurement noise, respectively. Algorithms such as the one presented in [1] leverages sum-of-squares programming and works closely to the real system dynamics without a great loss of the system dynamics. We seek to obtain a deeper insight into these algorithms and their performance compared to conventional approaches.

Tasks

- Literature review on state estimation techniques on non-linear systems [3, 4]
- Study of Sum-of-Squares programming [2, 5]
- Implementation of multiple algorithms in order to perform a comparative study
- Further study into state estimation with Sum-of-Squares programming [1]
- Optional: Propose a novel strategy

Requirements

Have or be motivated to acquire,

- Good knowledge in convex and non convex programming (previous knowledge in Sum-of-Squares programming is advantageous)
- Good understanding of Kalman filters and non-linear system theory
- Mathematical formalism and rigor

The thesis is to be written in English. Publication of results is envisaged.

Contact

Renato Loureiro, M.Sc. Institute of Flight Mechanics and Control Pfaffenwaldring 27, 70569 Stuttgart T: (+49) 0711 685 66623

E-Mail: renato.loureiro@ifr.uni-stuttgart.de

Master Thesis

Literature

[1] G. Hexner and H. Weiss, "An extended Kalman filter with a computed mean square error bound," IEEE Conference on Decision and Control, Los Angeles, CA, USA, 2014, pp. 5008-5014.

doi: 10.1109/CDC.2014.7040171

[2] Papachristodoulou, A., & Prajna, S. (2005). "A tutorial on sum of squares techniques for systems analysis". Proceedings of the American Control Conference, 4, 2686–2700. https://doi.org/10.1109/acc.2005.1470374

[3] Simon, D. (2010). "Kalman filtering with state constraints: A survey of linear and nonlinear algorithms". IET Control Theory and Applications, 4(8), 1303–1318. https://doi.org/10.1049/iet-cta.2009.0032

[4] H.W. Sorenson, "On the development of practical nonlinear filters", Information Sciences, Volume 7, 1974, Pages 253-270, ISSN 0020-0255. https://doi.org/10.1016/0020-0255(74)90017-6

[5] W. Tan, "Nonlinear Control Analysis and Synthesis using Sum-of-Squares programming", Ph.D. dissertation, University of California, Berkeley, 2006

