NONLINEAR SYSTEM ANALYSIS

State estimation with Sum-of-Squares programming

Motivation
The general problem of estimating the state of a nonlinear system given noisy measurement data is critical for system monitoring and controller feedback stability. Recent advances in sum-of-squares programming led to the development of multiple tools in analysis of nonlinear systems without linearization. Limited work has been done to use sum-of-squares in state estimation and how does applying this tool compares to conventional state estimation techniques such as extended Kalman filter.

Problem Statement
Our attention is directed to discrete-time systems as follows,

\[x_{k+1} = f_k(x_k) + w_k, \quad k = 1, 2, \ldots \]
\[z_k = h_k(x_k) + v_k, \quad k = 1, 2, \ldots \]

(1)

With \(f_k \) and \(h_k \) being nonlinear functions, and \(w_k \) and \(v_k \) being process disturbance and measurement noise, respectively. Algorithms such as the one presented in [1] leverages sum-of-squares programming and works closely to the real system dynamics without a great loss of the system dynamics. We seek to obtain a deeper insight into these algorithms and their performance compared to conventional approaches.

Tasks
- Literature review on state estimation techniques on non-linear systems [3, 4]
- Study of Sum-of-Squares programming [2, 5]
- Implementation of multiple algorithms in order to perform a comparative study
- Further study into state estimation with Sum-of-Squares programming [1]
- Optional: Propose a novel strategy

Requirements
Have or be motivated to acquire,
- Good knowledge in convex and non convex programming (previous knowledge in Sum-of-Squares programming is advantageous)
- Good understanding of Kalman filters and non-linear system theory
- Mathematical formalism and rigor

The thesis is to be written in English. Publication of results is envisaged.

Contact
Renato Loureiro, M.Sc.
Institute of Flight Mechanics and Control
Pfaffenwaldring 27, 70569 Stuttgart
T: (+49) 0711 685 66623
E-Mail: renato.loureiro@ifr.uni-stuttgart.de
State estimation with Sum-of-Squares programming

Literature

